Periodic surface structures frozen into CO2 laser-melted quartz

Ripple formation on laser-treated surfaces is studied in the infrared Reststrahlen region of quartz. We observe, for the first time, a dispersive behaviour of the ripple period. Thus we are led to a new explanation of the ripples: they represent holographic recordings of propagating electromagnetic surface waves (surface polaritons). Basic to this effect is a — hitherto not described — interference between a plane and an inhomogeneous wave, offering new possibilities for surface polariton physics.

[1]  F. Kneubühl,et al.  Formation of a periodic wave structure on the dry surface of a solid by TEA-CO2-laser pulses , 1973 .

[2]  H. M. Barlow,et al.  Radio surface waves , 1962 .

[3]  George K. Celler,et al.  Periodic regrowth phenomena produced by laser annealing of ion‐implanted silicon , 1978 .

[4]  D. C. Emmony,et al.  Laser mirror damage in germanium at 10.6 μm , 1973 .

[5]  N. Neuroth Über die Bestimmung der optischen Konstantenn, ϰ aus Reflexionsmessungen , 1956 .

[6]  E. Burstein,et al.  Surface polaritons—propagating electromagnetic modes at interfaces , 1974 .

[7]  P. Temple,et al.  Polarization charge model for laser-induced ripple patterns in dielectric materials , 1981 .

[8]  R. Slusher,et al.  Diffraction from laser‐induced deformation on reflective surfaces , 1976 .

[9]  H. Nassenstein Holographie Und Interferenzversuche Mit Inhomogenen Oberflächenwellen , 1968 .

[10]  D. Gerstenberg,et al.  Physics of Thin Films , 1964 .

[11]  Laser damage in germanium , 1975 .

[12]  M. Oron,et al.  New experimental evidence of the periodic surface structure in laser annealing , 1979 .

[13]  G. Maracas,et al.  On the origin of periodic surface structure of laser‐annealed semiconductors , 1978 .

[14]  Roger Petit,et al.  Electromagnetic theory of gratings , 1980 .

[15]  Animesh K. Jain,et al.  Periodic surface ripples in laser‐treated aluminum and their use to determine absorbed power , 1981 .

[16]  T. R. Steyer,et al.  Infrared absorption by small amorphous quartz spheres. , 1974, Applied optics.

[17]  F. Zernike,et al.  EXPERIMENTAL STUDIES OF EVANESCENT WAVE COUPLING INTO A THIN‐FILM WAVEGUIDE , 1970 .

[18]  D. A. Kleinman,et al.  Infrared Lattice Bands of Quartz , 1961 .

[19]  Hiroshi Nishihara,et al.  Waveguide holograms: A new approach to hologram integration , 1976 .

[20]  N. Isenor CO2 laser‐produced ripple patterns on NixP1−x surfaces , 1977 .

[21]  A. Maradudin,et al.  Surface Polaritons On Large-amplitude Gratings , 1981 .

[22]  M. Richardson,et al.  Energy absorption in plasmas produced by intense 10‐μm laser radiation , 1979 .

[23]  W. Lamb Theory of an optical maser , 1964 .

[24]  J. J. Cowan,et al.  The surface ace plasmon resonance effect in holography , 1972 .

[25]  H. Haken,et al.  Nonlinear interaction of laser modes , 1963 .

[26]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .