Fractional calculus of variations for a combined Caputo derivative

We generalize the fractional Caputo derivative to the fractional derivative CDγα,β, which is a convex combination of the left Caputo fractional derivative of order α and the right Caputo fractional derivative of order β. The fractional variational problems under our consideration are formulated in terms of CDγα,β. The Euler-Lagrange equations for the basic and isoperimetric problems, as well as transversality conditions, are proved.

[1]  Delfim F. M. Torres,et al.  Minimal modified energy control for fractional linear control systems with the Caputo derivative , 2010, 1004.3113.

[2]  Delfim F. M. Torres,et al.  Fractional Noether's theorem in the Riesz-Caputo sense , 2010, Appl. Math. Comput..

[3]  Newton's aerodynamic problem in media of chaotically moving particles , 2004, math/0407406.

[4]  Dumitru Baleanu,et al.  The Hamilton formalism with fractional derivatives , 2007 .

[5]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[6]  Om P. Agrawal,et al.  Fractional variational calculus in terms of Riesz fractional derivatives , 2007 .

[7]  Om P. Agrawal,et al.  Generalized Euler—Lagrange Equations and Transversality Conditions for FVPs in terms of the Caputo Derivative , 2007 .

[8]  Delfim F. M. Torres,et al.  Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β) , 2007 .

[9]  B. Ababneh,et al.  Hamilton–Jacobi fractional mechanics , 2007, 0704.0519.

[10]  G. Jumarie Fractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost function , 2007 .

[11]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[12]  Agnieszka B. Malinowska,et al.  Natural boundary conditions in the calculus of variations , 2008, 0812.0705.

[13]  Delfim F. M. Torres,et al.  Fractional calculus of variations for double integrals , 2011 .

[14]  Stefan Samko,et al.  FUNCTIONS THAT HAVE NO FIRST ORDER DERIVATIVE MIGHT HAVE FRACTIONAL DERIVATIVES OF ALL ORDERS LESS THAN ONE , 1994 .

[15]  Dumitru Baleanu,et al.  Fractional Newtonian mechanics , 2010 .

[16]  O. Agrawal,et al.  Fractional hamilton formalism within caputo’s derivative , 2006, math-ph/0612025.

[17]  John L. Troutman,et al.  Variational Calculus and Optimal Control , 1996 .

[18]  Delfim F. M. Torres,et al.  Leitmann's direct method for fractional optimization problems , 2010, Appl. Math. Comput..

[19]  Agnieszka B. Malinowska,et al.  On the diamond-alpha riemann integral and mean value theorems on time scales , 2008 .

[20]  Agnieszka B. Malinowska,et al.  Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative , 2010, Comput. Math. Appl..

[21]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[22]  Guy Jumarie,et al.  An approach via fractional analysis to non-linearity induced by coarse-graining in space , 2010 .

[23]  Delfim F. M. Torres,et al.  Discrete-time fractional variational problems , 2010, Signal Process..

[24]  Malslashgorzata Klimek,et al.  Stationarity–conservation laws for fractional differential equations with variable coefficients , 2002 .

[25]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[26]  Delfim F. M. Torres,et al.  A formulation of Noether's theorem for fractional problems of the calculus of variations , 2007 .

[27]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  T. Atanacković,et al.  Variational problems with fractional derivatives: Euler–Lagrange equations , 2008, 1101.2961.

[29]  Agnieszka B. Malinowska,et al.  A fractional calculus of variations for multiple integrals with application to vibrating string , 2010, 1001.2722.

[30]  Jacky Cresson,et al.  Fractional embedding of differential operators and Lagrangian systems , 2006, math/0605752.

[31]  Delfim F. M. Torres,et al.  Fractional actionlike variational problems , 2008, 0804.4500.

[32]  Delfim F. M. Torres,et al.  Diamond- Jensen's Inequality on Time Scales , 2007, 0712.1680.

[33]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.

[34]  Mehdi Dalir,et al.  Applications of Fractional Calculus , 2010 .

[35]  D. Baleanu Fractional variational principles in action , 2009 .

[36]  D.Baleanu,et al.  Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives , 2005, hep-th/0510071.

[37]  Delfim F. M. Torres,et al.  Fractional variational calculus for nondifferentiable functions , 2011, Comput. Math. Appl..

[38]  Delfim F. M. Torres,et al.  Calculus of variations with fractional derivatives and fractional integrals , 2009, Appl. Math. Lett..

[39]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[40]  V. E. Tarasov Fractional Vector Calculus and Fractional Maxwell's Equations , 2008, 0907.2363.

[41]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .