Continuous Ramsey Theory on Polish Spaces and Covering the plane by Functions

We investigate the Ramsey theory of continuous graph-structures on complete, separable metric spaces and apply the results to the problem of covering a plane by functions. Let the homogeneity number hm(c) of a pair-coloring c : (X) 2 ! 2 be the number of c-homogeneous subsets of X needed to cover X. We isolate two continuous pair-colorings on the Cantor space 2 ! , cmin and cmax, which satisfy hm(cmin) hm(cmax) and prove:

[1]  Covering R^n^+^1 by graphs of n-ary functions and long linear orderings of Turing degrees , 2004 .

[2]  Jindřich Zapletal Descriptive Set Theory and Definable Forcing , 2004 .

[3]  Noga Alon,et al.  Problems and results in extremal combinatorics--I , 2003, Discret. Math..

[4]  Robin Thomas,et al.  Progress on perfect graphs , 2003, Math. Program..

[5]  P. Seymour,et al.  The Strong Perfect Graph Theorem , 2002, math/0212070.

[6]  S. Shelah,et al.  Duality and the pcf theory , 2002, math/0212041.

[7]  Stefan Geschke,et al.  Convex decompositions in the plane and continuous pair colorings of the irrationals , 2002 .

[8]  Saharon Shelah,et al.  On the Consistency of Some Partition Theorems for Continuous Colorings, and the Structure of ℵ 1 -Dense Real Order Types , 2002 .

[9]  Stefan Geschke,et al.  Convexity numbers of closed sets in R^n , 2002 .

[10]  Justin Tatch Moore,et al.  Open colorings, the continuum and the second uncountable cardinal , 2002 .

[11]  K. Ciesielski,et al.  Covering Property Axiom CPA , 2002 .

[12]  Beer Sheua ON THE CONSISTENCY OF SOME PARTITION THEOREMS FOR CONTINUOUS COLORINGS , 2001 .

[13]  K. P. Hart,et al.  A Small Transitive Family of Continuous Functions on the Cantor Set , 2000, math/0004024.

[14]  Ilijas Farah,et al.  Analytic Quotients: Theory of Liftings for Quotients over Analytic Ideals on the Integers , 2000 .

[15]  M. Kojman Convexity ranks in higher dimensions , 2000 .

[16]  Juris Steprāns,et al.  Decomposing Euclidean space with a small number of smooth sets , 1999 .

[17]  Haim Judah,et al.  Set Theory: On the Structure of the Real Line , 1995 .

[18]  A. Blass Simple Cardinal Characteristics of the Continuum , 1994, math/9405202.

[19]  Qi Feng,et al.  Homogeneity for open partitions of pairs of reals , 1993 .

[20]  B. Velickovic OCA and automorphisms of P(ω) ⧸ fin , 1993 .

[21]  S. Shelah,et al.  Many simple cardinal invariants , 1992, Arch. Math. Log..

[22]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[23]  Stevo Todorcevic,et al.  Partition Problems In Topology , 1989 .

[24]  Saharon Shelah,et al.  On the consistency of some partition theorems for continuous colorings, and the structure of aleph1-dense real order types , 1985, Ann. Pure Appl. Log..

[25]  D. Preiss,et al.  Convexity conditions and intersections with smooth functions , 1985 .

[26]  Kenneth Kunen,et al.  Set Theory: An Introduction to Independence Proofs , 2010 .

[27]  Saharon Shelah,et al.  Monadic theory of order and topology in ZFC , 1982, Ann. Math. Log..

[28]  James E. Baumgartner,et al.  Chains and antichains in , 1980, Journal of Symbolic Logic.

[29]  Alexander S. Kechris,et al.  On a notion of smallness for subsets of the Baire space , 1977 .

[30]  S. Shelah The monadic theory of order , 1975, 2305.00968.

[31]  J. Spencer Probabilistic Methods in Combinatorics , 1974 .

[32]  James E. Baumgartner,et al.  Αll $ℵ_1$-dense sets of reals can be isomorphic , 1973 .

[33]  Jr. V. L. Klee Convex sets in linear spaces. III. , 1951 .

[34]  S. Eilenberg Ordered Topological Spaces , 1941 .