The Quantum Entropy Cone of Hypergraphs

In this work, we generalize the graph-theoretic techniques used for the holographic entropy cone to study hypergraphs and their analogously-defined entropy cone. This allows us to develop a framework to efficiently compute entropies and prove inequalities satisfied by hypergraphs. In doing so, we discover a class of quantum entropy vectors which reach beyond those of holographic states and obey constraints intimately related to the ones obeyed by stabilizer states and linear ranks. We show that, at least up to 4 parties, the hypergraph cone is identical to the stabilizer entropy cone, thus demonstrating that the hypergraph framework is broadly applicable to the study of entanglement entropy. We conjecture that this equality continues to hold for higher party numbers and report on partial progress on this direction. To physically motivate this conjectured equivalence, we also propose a plausible method inspired by tensor networks to construct a quantum state from a given hypergraph such that their entropy vectors match.

[1]  T. Faulkner,et al.  A general proof of the quantum null energy condition , 2017, Journal of High Energy Physics.

[2]  Sergio Hernandez-Cuenca Holographic entropy cone for five regions , 2019, Physical Review D.

[3]  D. Marolf,et al.  Bare Quantum Null Energy Condition. , 2017, Physical review letters.

[4]  V. Hubeny,et al.  Holographic Entropy Relations , 2018, Fortschritte der Physik.

[5]  M. Freedman,et al.  Bit Threads and Holographic Entanglement , 2016, Communications in Mathematical Physics.

[6]  Illan F. Halpern,et al.  Conditional and multipartite entanglements of purification and holography , 2018, Physical Review D.

[7]  Illan F. Halpern,et al.  Holographic inequalities and entanglement of purification , 2017, Journal of High Energy Physics.

[8]  Koji Umemoto,et al.  Entanglement of purification for multipartite states and its holographic dual , 2018, Journal of High Energy Physics.

[9]  V. Hubeny,et al.  The Holographic Entropy Arrangement , 2018, Fortschritte der Physik.

[10]  D. Marolf,et al.  Handlebody phases and the polyhedrality of the holographic entropy cone , 2017, 1705.10736.

[11]  V. Hubeny Bulk locality and cooperative flows , 2018, Journal of High Energy Physics.

[12]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[13]  Xi Dong,et al.  Holographic entropy cone with time dependence in two dimensions , 2019, Journal of High Energy Physics.

[14]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[15]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[16]  M. Raamsdonk,et al.  Locally Maximally Entangled States of Multipart Quantum Systems , 2018, Quantum.

[17]  R. Bousso,et al.  Proof of the Quantum Null Energy Condition , 2015, 1509.02542.

[18]  Geoffrey Penington,et al.  Beyond toy models: distilling tensor networks in full AdS/CFT , 2018, Journal of High Energy Physics.

[19]  M. Walter,et al.  Multipartite Entanglement in Stabilizer Tensor Networks. , 2016, Physical review letters.

[20]  C. Gogolin,et al.  Optimal quantum error correcting codes from absolutely maximally entangled states , 2017, 1701.03359.

[21]  Randall Dougherty Computations of linear rank inequalities on six variables , 2014, 2014 IEEE International Symposium on Information Theory.

[23]  Aron C. Wall Maximin surfaces, and the strong subadditivity of the covariant holographic entanglement entropy , 2012, 1211.3494.

[24]  M. Lunelli,et al.  Representation of matroids , 2002, math/0202294.

[25]  Nikolai K. Vereshchagin,et al.  Inequalities for Shannon Entropy and Kolmogorov Complexity , 1997, J. Comput. Syst. Sci..

[26]  Xi Dong,et al.  Holographic entanglement entropy for general higher derivative gravity , 2013, 1310.5713.

[27]  Fu-Wen Shu,et al.  Bit threads and holographic entanglement of purification , 2019, Journal of High Energy Physics.

[28]  J. Preskill,et al.  Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.

[29]  A Note on Menger's Theorem for Hypergraphs , 2012 .

[30]  Xi Dong,et al.  Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality. , 2016, Physical review letters.

[31]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[32]  Giorgio Parisi,et al.  Maximally multipartite entangled states , 2007, 0710.2868.

[33]  M. Walter,et al.  The holographic entropy cone , 2015, 1505.07839.

[34]  T. Takayanagi,et al.  Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.

[35]  P. Hayden,et al.  Holographic mutual information is monogamous , 2011, 1107.2940.

[36]  A finite entanglement entropy and the c-theorem , 2004, hep-th/0405111.

[37]  M. Zaletel,et al.  Entanglement of purification: from spin chains to holography , 2017, 1709.07424.

[38]  H. Casini,et al.  Markov Property of the Conformal Field Theory Vacuum and the a Theorem. , 2017, Physical review letters.

[39]  M. Mezei,et al.  On the Entropy Cone for Large Regions at Late Times , 2018, 1811.00019.

[40]  Patrick Hayden,et al.  Entanglement Wedge Reconstruction via Universal Recovery Channels , 2017, Physical Review X.

[41]  Gilad Gour,et al.  qu an tph ] 1 4 Ju l 2 01 0 All Maximally Entangled Four Qubits States , 2010 .

[42]  Frantisek Matús,et al.  The Quantum Entropy Cone of Stabiliser States , 2013, TQC.

[43]  V. Chandrasekaran,et al.  Quantum null energy condition, entanglement wedge nesting, and quantum focusing , 2017, Physical Review D.

[44]  P. Hayden,et al.  Holographic duality from random tensor networks , 2016, 1601.01694.

[45]  Zhao Yang,et al.  Bidirectional holographic codes and sub-AdS locality , 2015, 1510.03784.

[46]  T. Takayanagi,et al.  Holographic Derivation of Entanglement Entropy from AdS/CFT , 2006, hep-th/0603001.

[47]  H. Casini,et al.  Modular Hamiltonians on the null plane and the Markov property of the vacuum state , 2017, 1703.10656.

[48]  C. Akers,et al.  Entanglement wedge cross sections require tripartite entanglement , 2019, Journal of High Energy Physics.

[49]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[50]  Alex J. Grant,et al.  Truncation Technique for Characterizing Linear Polymatroids , 2011, IEEE Transactions on Information Theory.

[51]  Stefan Leichenauer,et al.  Holographic Proof of the Quantum Null Energy Condition , 2015, 1512.06109.

[53]  C. Macchiavello,et al.  Quantum hypergraph states , 2012, 1211.5554.

[55]  Grant N. Remmen,et al.  Towards a bit threads derivation of holographic entanglement of purification , 2019, Journal of High Energy Physics.

[56]  T. Takayanagi,et al.  Entanglement of purification through holographic duality , 2018 .

[57]  Shawn X. Cui,et al.  Bit Threads and Holographic Monogamy , 2018, Communications in Mathematical Physics.

[58]  T. Takayanagi,et al.  A covariant holographic entanglement entropy proposal , 2007, 0705.0016.

[60]  V. Hubeny,et al.  The quantum marginal independence problem , 2019, 1912.01041.

[61]  J. Latorre,et al.  Absolute maximal entanglement and quantum secret sharing , 2012, 1204.2289.

[62]  Bernhard Schölkopf,et al.  Learning with Hypergraphs: Clustering, Classification, and Embedding , 2006, NIPS.

[63]  Frantisek Matús,et al.  Infinitely Many Information Inequalities , 2007, 2007 IEEE International Symposium on Information Theory.

[64]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .