Strongly regular graphs

Strongly regular graphs form an important class of graphs which lie somewhere between the highly structured and the apparently random. This chapter gives an introduction to these graphs with pointers to more detailed surveys of particular topics.

[1]  R. Paley On Orthogonal Matrices , 1933 .

[2]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[3]  A. Thomason Pseudo-Random Graphs , 1987 .

[4]  W. G. Bridges,et al.  Multiplicative cones — a family of three eigenvalue graphs , 1981 .

[5]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.

[6]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory A.

[7]  Willem H. Haemers,et al.  Deza graphs: A generalization of strongly regular graph , 1999 .

[8]  J. J. Seidel,et al.  TWO-GRAPHS, A SECOND SURVEY , 1981 .

[9]  A. Neumaier Strongly regular graphs with smallest eigenvalue —m , 1979 .

[10]  R. C. Bose Strongly regular graphs, partial geometries and partially balanced designs. , 1963 .

[11]  N. Wormald,et al.  Models of the , 2010 .

[12]  J. Seidel Strongly regular graphs with (-1, 1, 0) adjacency matrix having eigenvalue 3 , 1968 .

[13]  Yoshimi Egawa,et al.  Association Schemes of Quadratic Forms , 1985, J. Comb. Theory, Ser. A.

[14]  W. Kantor,et al.  New prolific constructions of strongly regular graphs , 2002 .

[15]  E. Bannai,et al.  Algebraic Combinatorics I: Association Schemes , 1984 .

[16]  Béla Bollobás,et al.  Random Graphs , 1985 .

[17]  Peter J. Cameron,et al.  6-Transitive graphs , 1980, J. Comb. Theory, Ser. B.

[18]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[19]  Derek Allan Holton,et al.  The Petersen graph , 1993, Australian mathematical society lecture series.

[20]  W. D. Wallis,et al.  Construction of strongly regular graphs using affine designs , 1971, Bulletin of the Australian Mathematical Society.

[21]  J. J. Seidel,et al.  A SURVEY OF TWO-GRAPHS , 1976 .

[22]  Peter J. Cameron,et al.  Strongly Regular Graphs Having Strongly Regular Subconstituents , 1978 .

[23]  Hendrik Van Maldeghem Groups and Generalized Polygons (Algebraic Combinatorics) , 1998 .

[24]  Martin W. Liebeck,et al.  The Affine Permutation Groups of Rank Three , 1987 .

[25]  A. J. Hoffman,et al.  On the Uniqueness of the Triangular Association Scheme , 1960 .

[26]  R. A. Bailey Association Schemes: Designed Experiments, Algebra and Combinatorics , 2004 .