A fast direct solver for boundary value problems on locally perturbed geometries

Abstract Many applications including optimal design and adaptive discretization techniques involve solving several boundary value problems on geometries that are local perturbations of an original geometry. This manuscript presents a fast direct solver for boundary value problems that are recast as boundary integral equations. The idea is to write the discretized boundary integral equation on a new geometry as a low rank update to the discretized problem on the original geometry. Using the Sherman–Morrison formula, the inverse can be expressed in terms of the inverse of the original system applied to the low rank factors and the right hand side. Numerical results illustrate for problems where perturbation is localized the fast direct solver is three times faster than building a new solver from scratch.

[1]  Johan Helsing,et al.  On the evaluation of layer potentials close to their sources , 2008, J. Comput. Phys..

[2]  Eric Darve,et al.  An O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O (N \log N)$$\end{document} Fast Direct Solver fo , 2013, Journal of Scientific Computing.

[3]  Per-Gunnar Martinsson,et al.  A high-order accurate accelerated direct solver for acoustic scattering from surfaces , 2013 .

[4]  Lexing Ying,et al.  Hierarchical Interpolative Factorization for Elliptic Operators: Integral Equations , 2013, 1307.2666.

[5]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[6]  Leslie Greengard,et al.  On the Numerical Solution of Two-Point Boundary Value Problems , 1991 .

[7]  S. Chandrasekaran,et al.  Algorithms to solve hierarchically semi-separable systems , 2007 .

[8]  V. Rokhlin,et al.  A fast direct solver for boundary integral equations in two dimensions , 2003 .

[9]  E. Yip A Note on the Stability of Solving a Rank-p Modification of a Linear System by the Sherman–Morrison–Woodbury Formula , 1986 .

[10]  Weng Cho Chew,et al.  Scattering from elongated objects: Direct solution in O(N log2 N) operations , 1996 .

[11]  Vladimir Rokhlin,et al.  On the numerical solution of two-point boundary value problems II , 1994 .

[12]  Lexing Ying,et al.  A Technique for Updating Hierarchical Skeletonization-Based Factorizations of Integral Operators , 2014, Multiscale Model. Simul..

[13]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[14]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[15]  Yuan-Fang Wang,et al.  Toward real-time, physically-correct soft tissue behavior simulation , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[16]  Shivkumar Chandrasekaran,et al.  A divide-and-conquer algorithm for the eigendecomposition of symmetric block-diagonal plus semiseparable matrices , 2004, Numerische Mathematik.

[17]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[18]  Charles L. Epstein,et al.  Smoothed Corners and Scattered Waves , 2015, SIAM J. Sci. Comput..

[19]  Wolfgang Dahmen,et al.  Wavelets in Numerical Analysis , 2005 .

[20]  Per-Gunnar Martinsson,et al.  A direct solver with O(N) complexity for integral equations on one-dimensional domains , 2011, 1105.5372.

[21]  E. Schnack,et al.  Shape design of elastostatic structures based on local perturbation analysis , 1989 .

[22]  Héctor D. Ceniceros,et al.  Fast algorithms with applications to pdes , 2005 .

[23]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[24]  Eric Darve,et al.  An $$\mathcal O (N \log N)$$O(NlogN)  Fast Direct Solver for Partial Hierarchically Semi-Separable Matrices , 2013 .

[25]  Dinesh K. Pai,et al.  ArtDefo: accurate real time deformable objects , 1999, SIGGRAPH.

[26]  Shravan Veerapaneni,et al.  Spectrally Accurate Quadratures for Evaluation of Layer Potentials Close to the Boundary for the 2D Stokes and Laplace Equations , 2014, SIAM J. Sci. Comput..

[27]  Per-Gunnar Martinsson,et al.  Fast direct solvers for integral equations in complex three-dimensional domains , 2009, Acta Numerica.

[28]  Gene H. Golub,et al.  Matrix computations , 1983 .