Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons.

[1]  Lisle W. Blackbourn,et al.  A Simple and Efficient System for Regulating Gene Expression in Human Pluripotent Stem Cells and Derivatives , 2014, Stem cells.

[2]  A. Musarò Understanding ALS: new therapeutic approaches , 2013, The FEBS journal.

[3]  Wim Robberecht,et al.  The changing scene of amyotrophic lateral sclerosis , 2013, Nature Reviews Neuroscience.

[4]  S. Finkbeiner,et al.  Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy , 2013, Proceedings of the National Academy of Sciences.

[5]  M. Emborg,et al.  Specification of Midbrain Dopamine Neurons from Primate Pluripotent Stem Cells , 2012, Stem cells.

[6]  R. Manzano,et al.  Genetic Biomarkers for ALS Disease in Transgenic SOD1G93A Mice , 2012, PloS one.

[7]  Kristopher L. Nazor,et al.  Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells , 2012, Nature.

[8]  Zhen Yan,et al.  Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells , 2012, Nature Communications.

[9]  Naoki Nishishita,et al.  Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors , 2011, Proceedings of the National Academy of Sciences.

[10]  Susan Lindquist,et al.  Generation of Isogenic Pluripotent Stem Cells Differing Exclusively at Two Early Onset Parkinson Point Mutations , 2011, Cell.

[11]  Yan Liu,et al.  Specification of transplantable astroglial subtypes from human pluripotent stem cells , 2011, Nature Biotechnology.

[12]  K. Eggan,et al.  Constructing and Deconstructing Stem Cell Models of Neurological Disease , 2011, Neuron.

[13]  J. Julien,et al.  Intracerebroventricular infusion of monoclonal antibody or its derived Fab fragment against misfolded forms of SOD1 mutant delays mortality in a mouse model of ALS , 2010, Journal of neurochemistry.

[14]  James A Thomson,et al.  Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency , 2010, Proceedings of the National Academy of Sciences.

[15]  M. Strong,et al.  Post-transcriptional control of neurofilaments: New roles in development, regeneration and neurodegenerative disease , 2010, Trends in Neurosciences.

[16]  M. Mancuso,et al.  D90A-SOD1 mutation in ALS: The first report of heterozygous Italian patients and unusual findings , 2010, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[17]  P. Andersen,et al.  Age and founder effect of SOD1 A4V mutation causing ALS , 2009, Neurology.

[18]  M. Tomishima,et al.  Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling , 2009, Nature Biotechnology.

[19]  Su-Chun Zhang,et al.  Directed Differentiation of Ventral Spinal Progenitors and Motor Neurons from Human Embryonic Stem Cells by Small Molecules , 2008, Stem cells.

[20]  Jean-Pierre Julien,et al.  Transgenic mouse models of amyotrophic lateral sclerosis. , 2006, Biochimica et biophysica acta.

[21]  Daniel J. Guillaume,et al.  Human embryonic stem cell‐derived neural precursors develop into neurons and integrate into the host brain , 2006, Journal of neuroscience research.

[22]  M. Strong,et al.  Mutant Copper-Zinc Superoxide Dismutase Binds to and Destabilizes Human Low Molecular Weight Neurofilament mRNA* , 2005, Journal of Biological Chemistry.

[23]  J. Glass,et al.  Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man , 2004, Experimental Neurology.

[24]  D. Borchelt,et al.  Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. , 2003, Human molecular genetics.

[25]  Minh N. H. Nguyen,et al.  Wild-Type Nonneuronal Cells Extend Survival of SOD1 Mutant Motor Neurons in ALS Mice , 2003, Science.

[26]  J. Kong,et al.  Overexpression of neurofilament subunit NF-L and NF-H extends survival of a mouse model for amyotrophic lateral sclerosis , 2000, Neuroscience Letters.

[27]  C. Gravel,et al.  Extra neurofilament NF-L subunits rescue motor neuron disease caused by overexpression of the human NF-H gene in mice. , 1999, Journal of neuropathology and experimental neurology.

[28]  L. Bruijn,et al.  Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. , 1998, Science.

[29]  Q. Zhu,et al.  Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Q. Zhu,et al.  Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant superoxide dismutase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Gurney,et al.  Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Borchelt,et al.  An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria , 1995, Neuron.

[33]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[34]  M. Somerville,et al.  Neurofilament Light and Polyadenylated mRNA Levels Are Decreased in Amyotrophic Lateral Sclerosis Motor Neurons , 1994, Journal of neuropathology and experimental neurology.

[35]  M. Pericak-Vance,et al.  Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. , 1993, Science.

[36]  J. Julien,et al.  Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: A mouse model of amyotrophic lateral sclerosis , 1993, Cell.

[37]  L. Cork,et al.  Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease , 1993, Cell.

[38]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[39]  J. Trojanowski,et al.  Novel monoclonal antibodies provide evidence for the in situ existence of a nonphosphorylated form of the largest neurofilament subunit , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  L. Kurland,et al.  Fine Structural Study of Neurofibrillary Changes in a Family with Amyotrophic Lateral Sclerosis , 1984, Journal of neuropathology and experimental neurology.

[41]  L. Sternberger,et al.  Microheterogeneity ("neurotypy") of neurofilament proteins. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. Lasek,et al.  The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons , 1975, The Journal of cell biology.

[43]  S. Carpenter Proximal axonal enlargement in motor neuron disease , 1968, Neurology.

[44]  P. Andersen,et al.  Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. , 2004, Brain : a journal of neurology.

[45]  L. WilliamsonT,et al.  神経フィラメントの欠如は,家族性筋萎縮性側索硬化症関連スーパオキジドジスムターゼ1変異に対する運動ニューロンの選択的易損性を低下させ,疾患を遅らせる , 1998 .