Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension

Abstract We study the consistency in the weak sense of the cell-centered Lagrangian scheme GLACE. The main result is that GLACE is weakly consistent on general meshes in any dimension. The proof relies on a new formula for some geometric vectors defined at the corners of the cell, and which are basic Lagrangian objects. It validates theoretically the use of isoparametric elements (based on Q 1 integration) for 3D Lagrangian compressible gas dynamics calculations. Finally we give the result of a simple convergence test in 2D.

[1]  C. L. Rousculp,et al.  A Compatible, Energy and Symmetry Preserving Lagrangian Hydrodynamics Algorithm in Three-Dimensional Cartesian Geometry , 2000 .

[2]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[3]  Mikhail Shashkov,et al.  Multi-Scale Lagrangian Shock Hydrodynamics on Q1/P0 Finite Elements: Theoretical Framework and Two-dimensional Computations. , 2008 .

[4]  Guglielmo Scovazzi,et al.  Galilean invariance and stabilized methods for compressible flows , 2007 .

[5]  Raphaël Loubère,et al.  The force/work differencing of exceptional points in the discrete, compatible formulation of Lagrangian hydrodynamics , 2006, J. Comput. Phys..

[6]  Pierre-Henri Maire,et al.  Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics , 2009, J. Comput. Phys..

[7]  Guglielmo Scovazzi,et al.  Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations☆ , 2007 .

[8]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[9]  Bruno Després,et al.  A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..

[10]  M. Shashkov Conservative Finite-Difference Methods on General Grids , 1996 .

[11]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[12]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[13]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[14]  Chi-Wang Shu,et al.  A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..

[15]  John K. Dukowicz Efficient volume computation for three-dimensional hexahedral cells , 1988 .

[16]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[17]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[18]  Donald E. Burton,et al.  Multidimensional discretization of conservation laws for unstructured polyhedral grids , 1994 .

[19]  S. K. Godunov,et al.  Reminiscences about Difference Schemes , 1999 .

[20]  Raphaël Loubère,et al.  A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods , 2005 .

[21]  E. Deriaz,et al.  LAGRANGIAN METHOD ENHANCED WITH EDGE SWAPPING FOR THE FREE FALL AND CONTACT PROBLEM , 2008 .

[22]  John K. Dukowicz,et al.  Vorticity errors in multidimensional Lagrangian codes , 1992 .

[23]  Guglielmo Scovazzi,et al.  A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework , 2007 .

[24]  Mark L. Wilkins,et al.  Use of artificial viscosity in multidimensional fluid dynamic calculations , 1980 .

[25]  R. Eymard,et al.  A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS , 2008, 0812.2097.

[26]  J. U. Brackbill,et al.  BAAL: a code for calculating three-dimensional fluid flows at all speeds with an Eulerian-Lagrangian computing mesh , 1975 .

[27]  Thomas J. R. Hughes,et al.  Stabilized shock hydrodynamics: I. A Lagrangian method , 2007 .

[28]  Kyōto Daigaku. Sūgakuka Lectures in mathematics , 1968 .

[29]  Mikhail Shashkov,et al.  Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations , 1998 .

[30]  T. Belytschko,et al.  A uniform strain hexahedron and quadrilateral with orthogonal hourglass control , 1981 .