Lysine‐50 is a likely site for anchoring the plasminogen N‐terminal peptide to lysine‐binding kringles

Interactions between the kringle 4 (K4) domain of human plasminogen (Pgn) and segments of the N‐terminal Glul‐Lys77 peptide (NTP) have been investigated via 1H‐NMR at 500 MHz. NTP peptide stretches devoid of Lys residues but carrying an internal Arg residue show negligible affinity toward K4 (equilibrium association constant Ka < 0.05 mM−1). In contrast, while most fragments containing an internal Lys residue exhibit affinities comparable to that shown by the blocked Lys derivative Nα‐acetyl‐L‐lysine‐methyl ester (Ka ˜ 0.2 mM−1), peptides encompassing Lys50 consistently show higher Ka values. Among the investigated linear peptides, Nα‐acetyl‐Ala‐Phe‐Tyr‐His‐Ser‐Ser‐Lys50‐Glu‐Gln‐NH2 (AcAFYHSKSOEQ‐NH2) exhibits the strongest interaction with K4 (Ka ˜ 1.4 mM−1), followed by AcYHSKSOEQ‐NH2 (Ka ˜ 0.9 mM−1). Relative to the wild‐type sequence, mutated hexapeptides exhibit lesser affinity for K4. When a Lys50 → Ser mutation was introduced (⇒ AcYHSSSOEQ‐NH2), binding was abolished.

[1]  M. Llinás,et al.  Structural/functional properties of the Glu1‐HSer57 N‐terminal fragment of human plasminogen: Conformational characterization and interaction with kringle domains , 1998, Protein science : a publication of the Protein Society.

[2]  M. Llinás,et al.  Ligand preferences of kringle 2 and homologous domains of human plasminogen: canvassing weak, intermediate, and high-affinity binding sites by 1H-NMR. , 1997, Biochemistry.

[3]  M. Koschinsky,et al.  The complete cDNA sequence encoding plasminogen from the European hedgehog (Erinaceus europaeus). , 1996, Gene.

[4]  G. Markus Conformational changes in plasminogen, their effect on activation, and the agents that modulate activation rates — a review , 1996 .

[5]  M. Llinás,et al.  Recombinant gene expression and 1H NMR characteristics of the kringle (2 + 3) supermodule: spectroscopic/functional individuality of plasminogen kringle domains. , 1996, Biochemistry.

[6]  C. Byrne,et al.  The Recurring Evolution of Lipoprotein(a) , 1995, The Journal of Biological Chemistry.

[7]  A. Horrevoets,et al.  The Activation-resistant Conformation of Recombinant Human Plasminogen Is Stabilized by Basic Residues in the Amino-terminal Hinge Region (*) , 1995, The Journal of Biological Chemistry.

[8]  M. Llinás,et al.  Plasminogen kringle 4 binds the heptapeptide fragment 44–50 of the plasminogen N‐terminal peptide , 1995, Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis.

[9]  R. Kelley,et al.  Ligand binding to the tissue-type plasminogen activator kringle 2 domain: structural characterization by 1H-NMR. , 1995, Biochemistry.

[10]  B. Dunn,et al.  Peptide Synthesis Protocols , 1994 .

[11]  T. Urano,et al.  Conformational change of plasminogen: effects of N-terminal peptides of Glu-plasminogen. , 1993, Thrombosis research.

[12]  R. Copeland,et al.  Interactions of a fluorescently labeled peptide with kringle domains in proteins , 1993, Journal of protein chemistry.

[13]  L. Weissbach,et al.  A plasminogen-related gene is expressed in cancer cells. , 1992, Biochemical and biophysical research communications.

[14]  A. Ichinose Multiple members of the plasminogen-apolipoprotein(a) gene family associated with thrombosis. , 1992, Biochemistry.

[15]  M. Llinás,et al.  Ligand specificity of human plasminogen kringle 4. , 1991, Biochemistry.

[16]  T. Urano,et al.  Effects of N-terminal peptide of Glu-plasminogen on the activation of Glu-plasminogen and its conversion to Lys-plasminogen. , 1991, Thrombosis research.

[17]  R. Elliott,et al.  Characterization of the cDNA coding for mouse plasminogen and localization of the gene to mouse chromosome 17. , 1990, Genomics.

[18]  B. Wiman,et al.  The Non-covalent interaction between plasmin and α2-antiplasmin , 1989 .

[19]  R. Lawn,et al.  Rhesus monkey apolipoprotein(a). Sequence, evolution, and sites of synthesis. , 1989, The Journal of biological chemistry.

[20]  T. Marti,et al.  Amino acid sequence of the heavy chain of porcine plasmin. Comparison of the carbohydrate attachment sites with the human and bovine species , 1987 .

[21]  K. Larsson,et al.  Molecular cloning and characterization of a full‐length cDNA clone for human plasminogen , 1987, FEBS letters.

[22]  T. Ryan,et al.  Photoaffinity labeling of functionally different lysine-binding sites in human plasminogen and plasmin. , 1985, Biochimica et biophysica acta.

[23]  J. Schaller,et al.  Complete amino acid sequence of bovine plasminogen. Comparison with human plasminogen. , 1985, European journal of biochemistry.

[24]  T. Marti,et al.  Determination of the complete amino-acid sequence of porcine miniplasminogen. , 1985, European journal of biochemistry.

[25]  Kurt Wüthrich,et al.  Homonuclear two-dimensional 1H NMR of proteins. Experimental procedures , 1984 .

[26]  K. Wüthrich,et al.  Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. , 1983, Biochemical and biophysical research communications.

[27]  R. Laursen,et al.  The lysine binding sites of human plasminogen. Evidence for a critical tryptophan in the binding site of kringle 4. , 1981, The Journal of biological chemistry.

[28]  P. Lerch,et al.  Localization of individual lysine-binding regions in human plasminogen and investigations on their complex-forming properties. , 1980, European journal of biochemistry.

[29]  B. Wiman,et al.  Molecular mechanism of physiological fibrinolysis , 1978, Nature.

[30]  R. R. Ernst,et al.  Two‐dimensional spectroscopy. Application to nuclear magnetic resonance , 1976 .

[31]  B. Wiman,et al.  Studies on the conformational changes of plasminogen induced during activation to plasmin and by 6-aminohexanoic acid. , 1973, European journal of biochemistry.

[32]  T. E. Petersen,et al.  Cloning and characterization of the bovine plasminogen cDNA. , 1995 .

[33]  R. Kaptein,et al.  Kringle solution structures via NMR: two-dimensional 1H-NMR analysis of horse plasminogen kringle 4. , 1994, Chemistry and physics of lipids.

[34]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[35]  B. Wiman,et al.  Structural relationship between "glutamic acid" and "lysine" forms of human plasminogen and their interaction with the NH2-terminal activation peptide as studied by affinity chromatography. , 1975, European journal of biochemistry.