Switched-Beam Graphene Plasmonic Nanoantenna in the Terahertz Wave Region

[1]  T. Iqbal,et al.  Efficient excitation of novel graphene plasmons using grating coupling , 2021, Applied Nanoscience.

[2]  A. Patnaik,et al.  Impact of silicon-based substrates on graphene THz antenna , 2021 .

[3]  P. Gu,et al.  High Sensing Properties of Magnetic Plasmon Resonance by Strong Coupling in Three-Dimensional Metamaterials , 2021, Journal of Lightwave Technology.

[4]  P. Gu,et al.  Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials , 2020 .

[5]  Ian F. Akyildiz,et al.  Graphene Hypersurface for Manipulation of THz Waves , 2020, Materials Science Forum.

[6]  Nelson Tansu,et al.  A Review on the Development of Tunable Graphene Nanoantennas for Terahertz Optoelectronic and Plasmonic Applications , 2020, Sensors.

[7]  Ian F. Akyildiz,et al.  Wideband Perfect Absorption Polarization Insensitive Reconfigurable Graphene Metasurface for THz Wireless Environment , 2019, 2019 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW).

[8]  Jing Chen,et al.  Highly sensitive refractive-index sensor based on strong magnetic resonance in metamaterials , 2019, Applied Physics Express.

[9]  Anastasios D. Koulouklidis,et al.  Experimental Demonstration of Ultrafast THz Modulation in a Graphene-Based Thin Film Absorber through Negative Photoinduced Conductivity , 2019, ACS photonics.

[10]  G. Park,et al.  Photonic Microcavity-Enhanced Magnetic Plasmon Resonance of Metamaterials for Sensing Applications , 2019, IEEE Photonics Technology Letters.

[11]  T. Iqbal Efficient excitation and amplification of the surface plasmons , 2018, Current Applied Physics.

[12]  Brajesh Kumar Kaushik,et al.  Performance enhancement of graphene plasmonic nanoantennas for THz communication , 2018, IET Microwaves, Antennas & Propagation.

[13]  Ian F. Akyildiz,et al.  A New Wireless Communication Paradigm through Software-Controlled Metasurfaces , 2018, IEEE Communications Magazine.

[14]  Amalendu Patnaik,et al.  Performance of Graphene Plasmonic Antenna in Comparison with Their Counterparts for Low-Terahertz Applications , 2018, Plasmonics.

[15]  Amalendu Patnaik,et al.  Material selection for THz antennas , 2018 .

[16]  Amalendu Patnaik,et al.  Graphene Plasmonic Bowtie Antenna for UWB THz Application , 2018, 2018 Twenty Fourth National Conference on Communications (NCC).

[17]  Sasmita Dash,et al.  Graphene loaded frequency reconfigurable metal antenna , 2017, 2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM).

[18]  Amalendu Patnaik,et al.  Dual band reconfigurable plasmonic antenna using bilayer graphene , 2017, 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[19]  D. Correas-Serrano,et al.  Graphene-based Antennas for Terahertz Systems: A Review , 2017, 1704.00371.

[20]  Ian F. Akyildiz,et al.  5G roadmap: 10 key enabling technologies , 2016, Comput. Networks.

[21]  Zabih Ghassemlooy,et al.  Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns , 2016 .

[22]  T. Iqbal,et al.  Coupling Efficiency of Surface Plasmon Polaritons for 1D Plasmonic Gratings: Role of Under- and Over-Milling , 2016, Plasmonics.

[23]  Youssef Tawk,et al.  Reconfigurable Antennas: Design and Applications , 2015, Proceedings of the IEEE.

[24]  I. Akyildiz,et al.  Full length article: Terahertz band: Next frontier for wireless communications , 2014 .

[25]  Xueming Liu,et al.  Electrically tunable graphene plasmonic quasicrystal metasurfaces for transformation optics , 2014, Scientific Reports.

[26]  Xiaodai Dong,et al.  Design of a Reconfigurable MIMO System for THz Communications Based on Graphene Antennas , 2014, IEEE Transactions on Terahertz Science and Technology.

[27]  Juan Sebastian Gómez Díaz,et al.  Reconfigurable THz Plasmonic Antenna Concept Using a Graphene Stack , 2012, 1210.8057.

[28]  Y. Ohno,et al.  Direct Synthesis of Graphene on SiO2 Substrates by Transfer-Free Processes , 2012 .

[29]  Ian F. Akyildiz,et al.  Channel Modeling and Capacity Analysis for Electromagnetic Wireless Nanonetworks in the Terahertz Band , 2011, IEEE Transactions on Wireless Communications.

[30]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[31]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[32]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[33]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[34]  Robert E. Miles,et al.  Terahertz frequency detection and identification of materials and objects , 2007 .

[35]  V. Gusynin,et al.  Magneto-optical conductivity in graphene , 2007, 0705.3783.

[36]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[37]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[38]  N. Peres,et al.  1 Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene , 2008 .