Highly-sensitive lifetime optical thermometers based on Nd3+, Yb3+:YF3 phosphors

[1]  Xusheng Wang,et al.  Up-conversion luminescence and temperature sensing properties of Ho3+/Gd3+ co-doped YbNbO4 phosphors , 2021 .

[2]  A. Bednarkiewicz,et al.  The influence of the Er3+ dopant concentration in LaPO4:Nd3+, Er3+ on thermometric properties of ratiometric and kinetic-based luminescent thermometers operating in NIR II and NIR III optical windows , 2021 .

[3]  E. Lukinova,et al.  Temperature sensitivity of Nd3+, Yb3+:YF3 ratiometric luminescent thermometers at different Yb3+ concentration , 2021 .

[4]  A. Bednarkiewicz,et al.  NIR luminescence lifetime nanothermometry based on phonon assisted Yb3+–Nd3+ energy transfer , 2021, Nanoscale advances.

[5]  M. Pudovkin,et al.  Transmission electron microscopy and flow cytometry study of cellular uptake of unmodified Pr3+:LaF3 nanoparticles in dynamic , 2021, Journal of Nanoparticle Research.

[6]  K. Martirosyan,et al.  Fabrication of Nd3+ and Yb3+ doped NIR emitting nano fluorescent probe: A candidate for bioimaging applications. , 2021, Materials science & engineering. C, Materials for biological applications.

[7]  F. Tian,et al.  The role of surface related quenching in the single band ratiometric approach based on excited state absorption processes in Nd3+ doped phosphors , 2021, Materials Research Bulletin.

[8]  B. Richards,et al.  Ratiometric Luminescent Thermometry with Excellent Sensitivity over a Broad Temperature Range Utilizing Thermally‐Assisted and Multiphoton Upconversion in Triply‐Doped La2O3:Yb3+/Er3+/Nd3+ , 2020, Advanced Optical Materials.

[9]  M. Dramićanin Trends in luminescence thermometry , 2020 .

[10]  B. Richards,et al.  Smartphone‐Based Luminescent Thermometry via Temperature‐Sensitive Delayed Fluorescence from Gd2O2S:Eu3+ , 2020, Advanced Optical Materials.

[11]  V. Plaušinaitienė,et al.  Temperature induced emission enhancement and investigation of Nd3+→Yb3+ energy transfer efficiency in NaGdF4:Nd3+, Yb3+, Er3+ upconverting nanoparticles , 2020 .

[12]  S. Kuznetsov,et al.  Luminescent thermometry based on Ba4Y3F17:Pr3+ and Ba4Y3F17:Pr3+,Yb3+ nanoparticles , 2020, Ceramics International.

[13]  Hua Yu,et al.  Up-conversion luminescence lifetime thermometry based on the 1G4 state of Tm3+ modulated by cross relaxation processes. , 2019, Dalton transactions.

[14]  A. Kiiamov,et al.  Luminescence Nanothermometry Based on Pr3+ : LaF3 Single Core and Pr3+ : LaF3/LaF3 Core/Shell Nanoparticles , 2019, Advances in Materials Science and Engineering.

[15]  V. Salnikov,et al.  Cellular uptake and cytotoxicity of unmodified Pr3+:LaF3 nanoparticles , 2019, Journal of Nanoparticle Research.

[16]  A. Bednarkiewicz,et al.  Enhancing the sensitivity of a Nd3+,Yb3+:YVO4 nanocrystalline luminescent thermometer by host sensitization. , 2019, Physical chemistry chemical physics : PCCP.

[17]  A. Kiiamov,et al.  Characterization of Pr-Doped LaF3 Nanoparticles Synthesized by Different Variations of Coprecipitation Method , 2019, Journal of Nanomaterials.

[18]  Q. Shi,et al.  Near-infrared luminescence and energy transfer mechanism in K2YF5:Nd3+, Yb3+ , 2019, Materials Research Bulletin.

[19]  Yuansheng Wang,et al.  Heating-induced abnormal increase in Yb3+ excited state lifetime and its potential application in lifetime luminescence nanothermometry , 2019, Inorganic Chemistry Frontiers.

[20]  R. Piñol,et al.  Nanoscale Thermometry for Hyperthermia Applications , 2019, Nanomaterials for Magnetic and Optical Hyperthermia Applications.

[21]  K. Soga,et al.  Temperature Sensing of Deep Abdominal Region in Mice by Using Over-1000 nm Near-Infrared Luminescence of Rare-Earth-Doped NaYF4 Nanothermometer , 2018, Scientific Reports.

[22]  P. Haro-González,et al.  Fluorescence intensity ratio and lifetime thermometry of praseodymium phosphates for temperature sensing , 2018, Journal of Luminescence.

[23]  C. Jacinto,et al.  Optimizing the Nd:YF3 phosphor by impurities control in the synthesis procedure , 2018, Journal of Luminescence.

[24]  K. Trejgis,et al.  Luminescence lifetime thermometry with Mn3+–Mn4+ co-doped nanocrystals , 2018 .

[25]  Wei Feng,et al.  Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature , 2018, Nature Communications.

[26]  E. Zych,et al.  Widening the Temperature Range of Luminescent Thermometers through the Intra‐ and Interconfigurational Transitions of Pr3+ , 2018 .

[27]  Xinzhong Li,et al.  Efficient near-infrared down conversion in Nd 3+ -Yb 3+ co-doped transparent nanostructured glass ceramics for photovoltaic application , 2018 .

[28]  M. Ferid,et al.  Optical temperature sensing of Er 3+ /Yb 3+ doped LaGdO 3 based on fluorescence intensity ratio and lifetime thermometry , 2018 .

[29]  Ricardo F. Mendes,et al.  Excimer Formation in a Terbium Metal–Organic Framework Assists Luminescence Thermometry , 2017 .

[30]  Ilmo Sildos,et al.  Relation of Crystallinity and Fluorescent Properties of LaF3:Nd3+ Nanoparticles Synthesized with Different Water-Based Techniques , 2017 .

[31]  J. R. Silva,et al.  High Nd3+→Yb3+ energy transfer efficiency in tungsten‐tellurite glass: A promising converter for solar cells , 2017 .

[32]  H. Seo,et al.  Controlled synthesis, multicolor luminescence, and optical thermometer of bifunctional NaYbF4:Nd3+@NaYF4:Yb3+ active-core/active-shell colloidal nanoparticles , 2017 .

[33]  A. Nizamutdinov,et al.  Photoinduced toxicity of PrF3 and LaF3 nanoparticles , 2016 .

[34]  D. Jaque,et al.  Unveiling in Vivo Subcutaneous Thermal Dynamics by Infrared Luminescent Nanothermometers. , 2016, Nano letters.

[35]  Wei Feng,et al.  Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature , 2016, Nature Communications.

[36]  L. Carlos,et al.  Lanthanides in Luminescent Thermometry , 2016 .

[37]  M M Paulides,et al.  Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. , 2015, Cancer treatment reviews.

[38]  L. Carlos,et al.  Boosting the sensitivity of Nd(3+)-based luminescent nanothermometers. , 2015, Nanoscale.

[39]  W. Stręk,et al.  Near infrared absorbing near infrared emitting highly-sensitive luminescent nanothermometer based on Nd(3+) to Yb(3+) energy transfer. , 2015, Physical chemistry chemical physics : PCCP.

[40]  B. Yan,et al.  Ratiometric detection of temperature using responsive dual-emissive MOF hybrids , 2015 .

[41]  A. Nizamutdinov,et al.  Toxicity of laser irradiated photoactive fluoride PrF3 nanoparticles toward bacteria , 2014 .

[42]  J. Nedeljković,et al.  Self-referenced luminescence thermometry with Sm3+ doped TiO2 nanoparticles , 2014, Nanotechnology.

[43]  J. G. Solé,et al.  Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents , 2014 .

[44]  Satoshi Arai,et al.  A nanoparticle-based ratiometric and self-calibrated fluorescent thermometer for single living cells. , 2014, ACS nano.

[45]  Z. Xia,et al.  Near-infrared luminescence and quantum cutting mechanism in CaWO4:Nd3+, Yb3+ , 2013 .

[46]  Daniel Jaque,et al.  Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles. , 2013, ACS nano.

[47]  Luís D Carlos,et al.  Thermometry at the nanoscale. , 2015, Nanoscale.

[48]  L. Nunes,et al.  Near-infrared quantum cutting through a three-step energy transfer process in Nd3+–Yb3+ co-doped fluoroindogallate glasses , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[49]  Daniel Jaque,et al.  Luminescence nanothermometry. , 2012, Nanoscale.

[50]  Thijs J. H. Vlugt,et al.  Downconversion for solar cells in YF3:Nd3+, Yb3+ , 2010 .

[51]  M. Tan,et al.  Synthesis and optical properties of infrared-emitting YF3: Nd nanoparticles , 2009 .

[52]  B. R. Reddy,et al.  High temperature measurement using luminescence of Pr3+ doped YAG and Ho3+ doped CaF2 , 2009 .

[53]  M. Bass,et al.  Temperature‐dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals , 2005 .

[54]  Fuxi Gan,et al.  Dependence of the Yb 3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet , 2003 .

[55]  I. R. Martín,et al.  Stark level structure and oscillator strengths of Nd3+ ion in different fluoride single crystals , 2001 .

[56]  J. A. Sanz-Garcia,et al.  TEMPERATURE DEPENDENCE OF THE OPTICAL PROPERTIES OF YB3+ IONS IN LINBO3 CRYSTALS , 1998 .