A Continuous Updating Rule for Imprecise Probabilities

The paper studies the continuity of rules for updating imprecise probability models when new data are observed. Discontinuities can lead to robustness issues: this is the case for the usual updating rules of the theory of imprecise probabilities. An alternative, continuous updating rule is introduced.

[1]  Didier Dubois,et al.  Mathematical models for handling partial knowledge in artificial intelligence , 1995 .

[2]  F. Smithies Linear Operators , 2019, Nature.

[3]  Enrique Miranda Updating coherent previsions on finite spaces , 2009, Fuzzy Sets Syst..

[4]  Nic Wilson,et al.  Revision rules for convex sets of probabilities , 1995 .

[5]  H. Jeffreys,et al.  Theory of probability , 1896 .

[6]  L. McLinden,et al.  A Minimax Theorem , 1984, Math. Oper. Res..

[7]  Marco E. G. V. Cattaneo Fuzzy Probabilities Based on the Likelihood Function , 2008, SMPS.

[8]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[9]  Marco E. G. V. Cattaneo A generalization of credal networks , 2009 .

[10]  P. Walley Inferences from Multinomial Data: Learning About a Bag of Marbles , 1996 .

[11]  Andrea Wiencierz,et al.  Likelihood-based Imprecise Regression , 2012, Int. J. Approx. Reason..

[12]  L. M. M.-T. Theory of Probability , 1929, Nature.

[13]  Marco Zaffalon,et al.  Financial Valuation and Risk Management Working Paper No . 337 Limits of Learning from Imperfect Observations under Prior Ignorance : The Case of the Imprecise Dirichlet Model , 2005 .

[14]  Serafín Moral,et al.  Calculating Uncertainty Intervals from Conditional Convex Sets of Probabilities , 1992, UAI.

[15]  Peter A. Flach,et al.  Evaluation Measures for Multi-class Subgroup Discovery , 2009, ECML/PKDD.

[16]  K Fan,et al.  Minimax Theorems. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Giorgio Corani,et al.  Likelihood-Based Robust Classification with Bayesian Networks , 2012, IPMU.

[18]  Hans-Paul Schwefel,et al.  Introduction to Evolutionary Computing , 2004, Natural Computing Series.

[19]  Anne Lohrli Chapman and Hall , 1985 .

[20]  Luis M. de Campos,et al.  Updating Uncertain Information , 1990, IPMU.

[21]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[22]  Marco E. G. V. Cattaneo,et al.  On the Robustness of Imprecise Probability Methods , 2013 .

[23]  Itzhak Gilboa,et al.  Updating Ambiguous Beliefs , 1992, TARK.

[24]  Niclas Månsson,et al.  On the limits of learning , 2013 .

[25]  Sébastien Destercke,et al.  A Pairwise Label Ranking Method with Imprecise Scores and Partial Predictions , 2013, ECML/PKDD.

[26]  R. Hable,et al.  Coefficients of ergodicity for Markov chains with uncertain parameters , 2013 .

[27]  Andrés Cano,et al.  A Genetic algorithm to approximate convex sets of probabilities , 1996 .

[28]  Marco Zaffalon,et al.  Limits of Learning about a Categorical Latent Variable under Prior Near-Ignorance , 2007, Int. J. Approx. Reason..

[29]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .