Superluminal and slow femtosecond laser pulses in hyperbolic metamaterials in epsilon-near-zero regime.

Flourish of optics of hyperbolic metamaterials (HMMs) is stimulated by their exotic optical properties. Here, we demonstrate resonant changes of the group retardation and superluminal-like propagation of femtosecond laser pulses in nanorod-based HMMs in the vicinity of epsilon-near-zero spectral point responsible for the transition between topologically distinct elliptic and hyperbolic light dispersions. Resonant dynamics of ultrashort pulses appears in a unique case when their spectral components are in both dispersion regimes simultaneously. Our findings suggest HMMs as a powerful platform for future ultrafast photonics and are pivotal for growing nonlinear optics of hyperbolic media.

[1]  I. Kolmychek,et al.  Phase-matched optical second harmonic generation in a hyperbolic metamaterial based on silver nanorods , 2020 .

[2]  I. Kolmychek,et al.  Second-harmonic generation spectroscopy in gold nanorod-based epsilon-near-zero metamaterials. , 2020, Optics letters.

[3]  Yuzhang Liang,et al.  Hyperbolic Metamaterials and Metasurfaces: Fundamentals and Applications , 2019, Advanced Optical Materials.

[4]  P. Kelly,et al.  Pulse shaping in the presence of enormous second-order dispersion in Al:ZnO/ZnO epsilon-near-zero metamaterial , 2018 .

[5]  P. Luan,et al.  On the possibility of superluminal energy propagation in a hyperbolic metamaterial of metal-dielectric layers , 2017, 1712.09893.

[6]  Michael Scalora,et al.  Second-harmonic generation in longitudinal epsilon-near-zero materials , 2017 .

[7]  George T. Wang,et al.  Giant field enhancement in longitudinal epsilon-near-zero films , 2017, 1701.08870.

[8]  G. Wurtz,et al.  Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides , 2015, Scientific Reports.

[9]  Frank H. L. Koppens,et al.  Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity , 2015, Nature Photonics.

[10]  Igor Krois,et al.  Ultra-broadband simultaneous superluminal phase and group velocities in non-Foster epsilon-near-zero metamaterial , 2013 .

[11]  Z. Jacob,et al.  Broadband super-planckian thermal emission from hyperbolic metamaterials , 2012, CLEO: 2013.

[12]  G. Wurtz,et al.  Anisotropic optical properties of arrays of gold nanorods embedded in alumina , 2006 .

[13]  Robert W Boyd,et al.  Observation of Backward Pulse Propagation Through a Medium with a Negative Group Velocity , 2006, Science.

[14]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[15]  D. Gauthier,et al.  The speed of information in a ‘fast-light’ optical medium , 2003, Nature.

[16]  Robert W. Boyd,et al.  Superluminal and Slow Light Propagation in a Room-Temperature Solid , 2003, Science.

[17]  A. Cimmino,et al.  Negative group velocity of a light pulse in cesium vapour , 2002 .

[18]  Lipo Wang,et al.  Superluminal Light Pulse Propagation at a Negative Group Velocity , 2000, physics/0012060.

[19]  L. J. Wang,et al.  Gain-assisted superluminal light propagation , 2000, Nature.

[20]  Aephraim M. Steinberg,et al.  Measurement of the single-photon tunneling time. , 1993, Physical review letters.

[21]  Y. Silberberg,et al.  Nonlinear pulse shaping and causality. , 1993, Optics letters.

[22]  B. Segard,et al.  Observation of negative velocity pulse propagation , 1985 .

[23]  Steven Chu,et al.  Linear Pulse Propagation in an Absorbing Medium , 1982 .

[24]  M. Crisp Concept of Group Velocity in Resonant Pulse Propagation , 1971 .

[25]  F. R. Faxvog,et al.  MEASURED PULSE VELOCITY GREATER THAN c IN A NEON ABSORPTION CELL , 1970 .

[26]  C. Garrett,et al.  Propagation of a Gaussian Light Pulse through an Anomalous Dispersion Medium , 1970 .