Estimating the Incidence Energy

Bounds for the incidence energy of connected bipartite graphs were recently reported. We now extend these results to connected non-bipartite graphs. In addition, these bounds are generalized so as to apply to the sum of α-th powers of signless Laplacian eigenvalues, for any real α.

[1]  Margarida Mitjana,et al.  Kirchhoff Indexes of a network , 2010 .

[2]  Kexiang Xu,et al.  Comparison between Kirchhoff index and the Laplacian-energy-like invariant , 2012 .

[3]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[4]  R. Merris A survey of graph laplacians , 1995 .

[5]  Bo Zhou ON SUM OF POWERS OF LAPLACIAN EIGENVALUES AND LAPLACIAN ESTRADA INDEX OF GRAPHS , 2009 .

[6]  N. Trinajstic,et al.  The Zagreb Indices 30 Years After , 2003 .

[7]  I. Gutman,et al.  On Incidence Energy of Graphs , 2022 .

[8]  Pan Yong-liang Laplacian Eigenvalues of Graphs , 2003 .

[9]  I. Gutman,et al.  Laplacian energy of a graph , 2006 .

[10]  I. Gutman The Energy of a Graph: Old and New Results , 2001 .

[11]  V. Nikiforov The energy of graphs and matrices , 2006, math/0603583.

[12]  Bo Zhou,et al.  The Laplacian-energy Like Invariant is an Energy Like Invariant , 2010 .

[13]  Yanfeng Luo,et al.  On Laplacian-energy-like invariant of a graph < , 2012 .

[14]  Andrés M. Encinas,et al.  A formula for the Kirchhoff index , 2008 .

[15]  Saieed Akbari,et al.  On Sum of Powers of the Laplacian and Signless Laplacian Eigenvalues of Graphs , 2010, Electron. J. Comb..

[16]  Xiaogang Liu,et al.  The lollipop graph is determined by its Q-spectrum , 2009, Discret. Math..

[17]  José Luis Palacios Foster's Formulas via Probability and the Kirchhoff Index , 2004 .

[18]  D. Cvetkovic,et al.  Towards a spectral theory of graphs based on the signless Laplacian, I , 2009 .

[19]  Bolian Liu,et al.  A Survey on the Laplacian-Energy-Like Invariant ∗ , 2011 .

[20]  Cvetkovicccc Dragos,et al.  Towards a spectral theory of graphs based on the signless Laplacian, III , 2010 .

[21]  Bo Zhou,et al.  On the sum of powers of Laplacian eigenvalues of bipartite graphs , 2010 .

[22]  Ting-Zhu Huang,et al.  A note on sum of powers of the Laplacian eigenvalues of bipartite graphs , 2009 .

[23]  Ligong Wang,et al.  Sharp bounds for the largest eigenvalue of the signless Laplacian of a graph , 2010 .

[24]  Dariush Kiani,et al.  On incidence energy of a graph , 2009 .

[25]  Kinkar Chandra Das,et al.  On Laplacian energy of graphs , 2014, Discrete Mathematics.

[26]  Bo Zhou On sum of powers of the Laplacian eigenvalues of graphs , 2008 .

[27]  Bo Zhou,et al.  More Upper Bounds for the Incidence Energy , 2010 .

[28]  R. Balakrishnan The energy of a graph , 2004 .

[29]  Bojan Mohar,et al.  The Quasi-Wiener and the Kirchhoff Indices Coincide , 1996, J. Chem. Inf. Comput. Sci..

[30]  Jianping Li,et al.  New Results on the Incidence Energy of Graphs 1 , 2012 .

[31]  On Incidence Energy of Trees , 2011 .

[32]  Bo Zhou,et al.  Signless Laplacian spectral radius and Hamiltonicity , 2010 .

[33]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[34]  Anton Betten,et al.  Algebraic Combinatorics and Applications : Proceedings , 2001 .

[35]  D. Cvetkovic,et al.  Spectra of graphs : theory and application , 1995 .

[36]  Rao Li On α - Incidence Energy and α - Distance Energy of a Graph , 2015, Ars Comb..

[37]  Bolian Liu,et al.  A note on sum of powers of the Laplacian eigenvalues of graphs , 2011, Appl. Math. Lett..

[38]  Bolian Liu,et al.  A Laplacian-energy-like invariant of a graph , 2008 .