Clustering with proximity knowledge and relational knowledge

In this article, a proximity fuzzy framework for clustering relational data is presented, where the relationships between the entities of the data are given in terms of proximity values. We offer a comprehensive and in-depth comparison of our clustering framework with proximity relational knowledge to clustering with distance relational knowledge, such as the well known relational Fuzzy C-Means (FCM). We conclude that proximity can provide a richer description of the relationships among the data and this offers a significant advantage when realizing clustering. We further motivate clustering relational proximity data and provide both synthetic and real-world experiments to demonstrate both the usefulness and advantage offered by clustering proximity data. Finally, a case study of relational clustering is introduced where we apply proximity fuzzy clustering to the problem of clustering a set of trees derived from software requirements engineering. The relationships between trees are based on the degree of closeness in both the location of the nodes in the trees and the semantics associated with the type of connections between the nodes.

[1]  Mark A. Girolami,et al.  Mercer kernel-based clustering in feature space , 2002, IEEE Trans. Neural Networks.

[2]  Gunnar Rätsch,et al.  Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.

[3]  Sujeet Shenoi,et al.  Proximity relations in the fuzzy relational database model , 1999 .

[4]  Jörg Kienzle,et al.  Crisis Management Systems: A Case Study for Aspect-Oriented Modeling , 2010, LNCS Trans. Aspect Oriented Softw. Dev..

[5]  Thierry Denoeux,et al.  EVCLUS: evidential clustering of proximity data , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  K. Chidananda Gowda,et al.  Symbolic clustering using a new similarity measure , 1992, IEEE Trans. Syst. Man Cybern..

[7]  Witold Pedrycz,et al.  P-FCM: a proximity -- based fuzzy clustering , 2004, Fuzzy Sets Syst..

[8]  Edwin R. Hancock,et al.  Pattern Vectors from Algebraic Graph Theory , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[10]  Kaspar Riesen,et al.  Approximate graph edit distance computation by means of bipartite graph matching , 2009, Image Vis. Comput..

[11]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[12]  Hichem Frigui,et al.  Clustering and aggregation of relational data with applications to image database categorization , 2007, Pattern Recognit..

[13]  James C. Bezdek,et al.  Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm , 2002, Pattern Recognit. Lett..

[14]  C. Blakemore,et al.  Analysis of connectivity in the cat cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  Witold Pedrycz,et al.  Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study , 2010, Fuzzy Sets Syst..

[16]  Ruzanna Chitchyan,et al.  A framework for constructing semantically composable feature models from natural language requirements , 2009, SPLC.

[17]  Xavier Font,et al.  On relational possibilistic clustering , 2006, Pattern Recognit..

[18]  James M. Keller,et al.  Fuzzy Measures on the Gene Ontology for Gene Product Similarity , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[19]  Witold Pedrycz,et al.  Proximity fuzzy clustering and its application to time series clustering and prediction , 2010, 2010 10th International Conference on Intelligent Systems Design and Applications.

[20]  Edwin R. Hancock,et al.  Pattern analysis with graphs: Parallel work at Bern and York , 2012, Pattern Recognit. Lett..

[21]  Horst Bunke,et al.  Edit distance-based kernel functions for structural pattern classification , 2006, Pattern Recognit..

[22]  Ichigaku Takigawa,et al.  A spectral approach to clustering numerical vectors as nodes in a network , 2011, Pattern Recognit..

[23]  Jian-Ping Mei,et al.  Fuzzy clustering with weighted medoids for relational data , 2010, Pattern Recognit..

[24]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[25]  Sebastian Böcker,et al.  Exact Algorithms for Cluster Editing: Evaluation and Experiments , 2008, Algorithmica.

[26]  Edwin R. Hancock,et al.  Isotree: Tree clustering via metric embedding , 2008, Neurocomputing.

[27]  Francesco Masulli,et al.  A survey of kernel and spectral methods for clustering , 2008, Pattern Recognit..

[28]  Xuelong Li,et al.  A survey of graph edit distance , 2010, Pattern Analysis and Applications.

[29]  Raymond Bisdorff,et al.  Electre-like clustering from a pairwise fuzzy proximity index , 2002, Eur. J. Oper. Res..

[30]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[31]  Witold Pedrycz,et al.  Semantic Web Content Analysis: A Study in Proximity-Based Collaborative Clustering , 2007, IEEE Transactions on Fuzzy Systems.

[32]  Witold Pedrycz,et al.  A consensus-driven fuzzy clustering , 2008, Pattern Recognit. Lett..

[33]  James C. Bezdek,et al.  Nerf c-means: Non-Euclidean relational fuzzy clustering , 1994, Pattern Recognit..

[34]  Thierry Denoeux,et al.  RECM: Relational evidential c-means algorithm , 2009, Pattern Recognit. Lett..

[35]  James C. Bezdek,et al.  Relational duals of the c-means clustering algorithms , 1989, Pattern Recognit..

[36]  P. Nagabhushan,et al.  Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns , 2004, Pattern Recognit. Lett..