Organic and mineral networks in carapaces, bones and biomimetic materials

Skeletal tissues associate, in close interaction, an organic matrix and a mineral network. In crustaceans, chitin, the most frequent polysaccharide in invertebrate exoskeletons, is associated with calcite. In compact bone, collagen, major structural protein in vertebrate tissues is associated with hydroxyapatite. A parallel was evidenced in vivo between the three-dimensional assemblies of chitin and collagen matrices and molecular arrangements described in liquid crystals. The purified macromolecules, highly concentrated, assemble in vitro in ordered liquid crystalline phases. After stabilisation, they form biomimetic materials, presently investigated, in a pure state or in addition with inorganic phases to develop hybrid materials. To cite this article: M.-M. Giraud-Guille et al., C.R. Palevol 3 (2004).

[1]  W. Comper,et al.  The mechanism of nucleation for in vitro collagen fibril formation , 1977, Biopolymers.

[2]  D. Travis STRUCTURAL FEATURES OF MINERALIZATION FROM TISSUE TO MACROMOLECULAR LEVELS OF ORGANIZATION IN THE DECAPOD CRUSTACEA * , 1963, Annals of the New York Academy of Sciences.

[3]  Dr. Anthony C. Neville Biology of the Arthropod Cuticle , 1975, Zoophysiology and Ecology.

[4]  J. Trombe,et al.  New concepts in the composition, crystallization and growth of the mineral component of calcified tissues , 1981 .

[5]  M. Giraud‐Guille,et al.  Structure and Chirality of the Nematic Phase in α-Chitin Suspensions , 2004 .

[6]  M. Giraud‐Guille Fine structure of the chitin-protein system in the crab cuticle. , 1984, Tissue & cell.

[7]  Y Bouligand,et al.  Twisted fibrous arrangements in biological materials and cholesteric mesophases. , 1972, Tissue & cell.

[8]  Y. Bouligand SUR L'EXISTENCE DE "PSEUDOMORPHOSES CHOLESTÉRIQUES" CHEZ DIVERS ORGANISMES VIVANTS , 1969 .

[9]  K. Simkiss,et al.  PHOSPHATES AS CRYSTAL POISONS OF CALCIFICATION , 1964, Biological reviews of the Cambridge Philosophical Society.

[10]  R. Baron L’ostéoclaste et les mécanismes moléculaires de la résorption osseuse , 2001 .

[11]  M. Glimcher Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  J. Blackwell,et al.  Structure of chitin-protein complexes: ovipositor of the ichneumon fly Megarhyssa. , 1980, Journal of molecular biology.

[13]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[14]  A. Ascenzi,et al.  The compressive properties of single osteons , 1968, The Anatomical record.

[15]  M. Giraud Carbonic anhydrase activity in the integument of the crab Carcinus maenas during the intermolt cycle , 1981 .

[16]  M. Giraud‐Guille,et al.  A Novel Route to Collagen-Silica Biohybrids , 2002 .

[17]  M. Burghammer,et al.  Twisted plywood pattern of collagen fibrils in teleost scales: an X-ray diffraction investigation. , 2001, Journal of structural biology.

[18]  P. Marie Différenciation, fonction et contrôle de l’ostéoblaste , 2001 .

[19]  R. Marchessault,et al.  In vitro chiral nematic ordering of chitin crystallites. , 1993, International journal of biological macromolecules.

[20]  M. Giraud‐Guille,et al.  Calcification initiation sites in the crab cuticle: The interprismatic septa , 1984, Cell and Tissue Research.

[21]  M. Giraud‐Guille,et al.  Twisted liquid crystalline supramolecular arrangements in morphogenesis. , 1996, International review of cytology.

[22]  M. Giraud‐Guille,et al.  Liquid crystallinity in condensed type I collagen solutions. A clue to the packing of collagen in extracellular matrices. , 1992, Journal of molecular biology.

[23]  M. Giraud‐Guille,et al.  Stabilization of fluid cholesteric phases of collagen to ordered gelated matrices. , 1995, Journal of molecular biology.