Enhancement of third-order nonlinearity of thermally evaporated GeSbSe waveguides through annealing.

Chalcogenides are a promising platform for infrared nonlinear optics but are susceptible to structural changes during fabrication that affect their linear and nonlinear optical properties. We analyze the structure and optical properties of thermally evaporated and annealed chalcogenide films. Thermally evaporated Ge28Sb12Se60 has an increased selenium content, bandgap, and concentration of heteropolar bonds. The concentration of heteropolar bonds can be reduced by annealing above the glass transition temperature, resulting in improved optical nonlinearity. We demonstrate a 4-fold enhancement of third-order nonlinearity in Ge28Sb12Se60 chalcogenide waveguides by thermal annealing and a decrease in propagation loss from 2.5 dB/cm to 1 dB/cm as an added benefit.

[1]  J. Tauc,et al.  Optical properties and electronic structure of amorphous Ge and Si , 1968 .

[2]  Leslie Brandon Shaw,et al.  Development and Infrared Applications of Chalcogenide Glass Optical Fibers , 2000 .

[3]  J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Ngu Development and Infrared Applications of Chalcogenide Glass Optical Fibers , 2000 .

[4]  M. Wakkad,et al.  Crystallization Kinetics and Some Physical Properties of As‐Prepared and Annealed Ge–Sb–Se Chalcogenide Glasses , 2001 .

[5]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[6]  Steve Madden,et al.  Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide. , 2008, Optics express.

[7]  Craig B. Arnold,et al.  Spin-coating of Ge23Sb7S70 chalcogenide glass thin films , 2009 .

[8]  Jean-Luc Adam,et al.  Infrared monitoring of underground CO2 storage using chalcogenide glass fibers , 2009 .

[9]  Anant Agarwal,et al.  Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses , 2009 .

[10]  Fei Gao,et al.  Third-order nonlinear optical properties of GeS(2)-Sb(2)S(3)-CdS chalcogenide glasses. , 2010, Optics express.

[11]  D. M. Mattox,et al.  Handbook of physical vapor deposition (PVD) processing , 2010 .

[12]  F. Ömer Ilday,et al.  Soliton–similariton fibre laser , 2010 .

[13]  Virginie Nazabal,et al.  Sputtering and Pulsed Laser Deposition for Near‐ and Mid‐Infrared Applications: A Comparative Study of Ge25Sb10S65 and Ge25Sb10Se65 Amorphous Thin Films , 2011 .

[14]  Anatol Khilo,et al.  Ultrafast nonlinear optical studies of silicon nanowaveguides. , 2012, Optics express.

[15]  J. David Musgraves,et al.  Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60 −xSex glass network , 2012 .

[16]  M. Hubert Chalcogenide glasses for infrared applications: New synthesis routes and rare earth doping , 2012 .

[17]  Tonglei Cheng,et al.  Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber. , 2013, Optics express.

[18]  Xiang Shen,et al.  Correlation between structural and physical properties in Ge-Sb-Se glasses , 2013 .

[19]  Steve Madden,et al.  Photo-induced and Thermal Annealing of Chalcogenide Films for Waveguide Fabrication , 2013 .

[20]  Frank Wise,et al.  Self-similar erbium-doped fiber laser with large normal dispersion. , 2014, Optics letters.

[21]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[22]  B M A Rahman,et al.  Dispersion engineered Ge₁₁.₅As₂₄ Se₆₄.₅ nanowire for supercontinuum generation: a parametric study. , 2014, Optics express.

[23]  Xiang Shen,et al.  Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses , 2014 .

[24]  D. Patidar,et al.  Kinetics of crystallization of Ge30-xSe70Sbx (x=15, 20, 25) chalcogenide glasses , 2014 .

[25]  Mathieu Chauvet,et al.  Structure, nonlinear properties, and photosensitivity of (GeSe_2)_100-x(Sb_2Se_3)_x glasses , 2014 .

[26]  I Hartl,et al.  Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation. , 2014, Optics letters.

[27]  Virginie Nazabal,et al.  Optical properties of (GeSe2)100−x(Sb2Se3)x glasses in near- and middle-infrared spectral regions , 2014 .

[28]  B. M. A. Rahman,et al.  Mid-infrared supercontinuum generation using dispersion-engineered Ge(11.5)As(24)Se(64.5) chalcogenide channel waveguide. , 2015, Optics express.

[29]  Xiang Shen,et al.  Third-order optical nonlinearities of chalcogenide glasses within Ge-Sn-Se ternary system at a mid-infrared window , 2015 .

[30]  Xiang Shen,et al.  Third-order nonlinearity in Ge-Sb-Se glasses at mid-infrared wavelengths , 2015 .

[31]  Xiang Shen,et al.  Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system. , 2015, Optics express.

[32]  V. Shiryaev,et al.  Preparation of High-Purity Chalcogenide Glasses , 2015 .

[33]  Lionel C. Kimerling,et al.  Nonlinear characterization of GeSbS chalcogenide glass waveguides , 2016, Scientific Reports.

[34]  W. Park,et al.  Linear and nonlinear optical properties of Ge-Sb-Se waveguides at telecom wavelengths , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[35]  A. L. Greer,et al.  Fast crystal growth in glass-forming liquids , 2016 .

[36]  A. Trapananti,et al.  Chemical Short-Range Order in Selenide and Telluride Glasses. , 2016, The journal of physical chemistry. B.

[37]  Emmanuel Rinnert,et al.  Structural analysis of RF sputtered Ge-Sb-Se thin films by Raman and X-ray photoelectron spectroscopies , 2016 .

[38]  Q. Nie,et al.  Improved nonlinear optical properties of chalcogenide glasses in Ge-Sn-Se ternary system by thermal treatment , 2016 .

[39]  Johann Troles,et al.  Coherent octave-spanning mid-infrared supercontinuum generated in As2S3-silica double-nanospike waveguide pumped by femtosecond Cr:ZnS laser. , 2016, Optics express.

[40]  M. Krogstad Ge-Sb-Se Chalcogenide Glass for Near- and Mid-Infrared Nonlinear Photonics , 2017 .

[41]  Laurent Calvez,et al.  Chalcogenide glasses and glass-ceramics: Transparent materials in the infrared for dual applications , 2017 .

[42]  G. Renversez,et al.  Measurement of ultrafast optical Kerr effect of Ge-Sb-Se chalcogenide slab waveguides by the beam self-trapping technique , 2017 .

[43]  Ming C. Wu,et al.  Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides. , 2018, Optics express.

[44]  Kathleen Richardson,et al.  New Candidate Multicomponent Chalcogenide Glasses for Supercontinuum Generation , 2018, Applied Sciences.

[45]  N. Kitamura Two types of structural relaxations around the deformation temperature of Ge20Sb15Se65 glass , 2018, Journal of Non-Crystalline Solids.

[46]  Anupama Yadav,et al.  Nonlinear optical properties of integrated GeSbS chalcogenide waveguides , 2018 .

[47]  Hoa Phuoc Trung Nguyen,et al.  Highly coherent supercontinuum in the mid-infrared region with cascaded tellurite and chalcogenide fibers. , 2018, Applied optics.

[48]  Ole Bang,et al.  Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. , 2018, Optics letters.

[49]  Mohammed N. Islam,et al.  Mid-infrared supercontinuum generation from 1.6 to >11  μm using concatenated step-index fluoride and chalcogenide fibers. , 2018, Optics letters.

[50]  J. H. Lee,et al.  Crystallization behavior of Ge-Sb-Se glasses in the compositional range for use as molded lenses , 2018 .