SORPTION AND THERMODYNAMIC PROPERTIES OF OLD AND NEW PINUS SYLVESTRIS WOOD

The 35° and 50°C isotherms of juvenile Pinus sylvestris L. wood from recently cut trees were compared with those of juvenile wood of the same species previously forming part of an 18th century wooden building in order to determine the thermodynamic properties of the two types of wood through the isotherms. The isotherms were plotted using the gravimetric method of saturated salts in the water activity range of 0.11 to 0.97 for the 35°C isotherm and 0.11 to 0.96 for the 50°C isotherm. The sorption curves were fitted using the GAB method, and the isosteric heat of sorption was obtained by means of the integration method of the Clausius-Clapeyron equation. In both types of wood, the net isosteric heat decreases as the moisture content of the specimen increases, and the maximum values of isosteric heat in the new wood are greater than in the old wood, both in adsorption and desorption. This indicates that the bond energy in the new wood is greater than in the old wood.

[1]  임영희,et al.  인증표준물질(Certified reference materials, CRM)을 이용한 다이옥신류(PCDDs/PCDFs) 측정의 정확도 평가 , 2009 .

[2]  P. Peralta,et al.  Moisture Content-Water Potential Characteristic Curves for Red Oak and Loblolly Pine , 2007 .

[3]  T. Kahyaoglu,et al.  Moisture sorption and thermodynamic properties of safflower petals and tarragon , 2007 .

[4]  Chiachung Chen Obtaining the isosteric sorption heat directly by sorption isotherm equations , 2006 .

[5]  Joseph Gril,et al.  Comparison of the hygroscopic behaviour of 205-year-old and recently cut juvenile wood from Pinus sylvestris L. , 2006 .

[6]  M. Azizi,et al.  Moisture sorption isotherms and isosteric heat for pistachio , 2006 .

[7]  N. Arslan,et al.  The fitting of various models to water sorption isotherms of tea stored in a chamber under controlled temperature and humidity , 2006 .

[8]  F. Chenlo,et al.  Sorption isotherms of turnip top leaves and stems in the temperature range from 298 to 328 K , 2005 .

[9]  Gerrit van Straten,et al.  Sorption isotherms, GAB parameters and isosteric heat of sorption , 2005 .

[10]  L. G. Esteban,et al.  Reduction of wood hygroscopicity and associated dimensional response by repeated humidity cycles , 2005, physics/0503174.

[11]  F. G. Fernández,et al.  Saturated salt method determination of hysteresis of Pinus sylvestris L. wood for 35 ºC isotherms , 2004 .

[12]  Rüdiger Mutz,et al.  Modelling juvenile-mature wood transition in Scots pine (Pinus sylvestris L.) using nonlinear mixed-effects models , 2004 .

[13]  A. Al-Muhtaseb,et al.  Water sorption isotherms of starch powders. Part 2: Thermodynamic characteristics , 2004 .

[14]  O. O. Ajibola,et al.  Sorption Equilibrium and Thermodynamic Characteristics of Soya Bean , 2004 .

[15]  Ala’a H. Al-Muhtaseb,et al.  Water sorption isotherms of starch powders: Part 1: mathematical description of experimental data , 2004 .

[16]  S. Lahsasni,et al.  Adsorption–desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica) , 2004 .

[17]  F. G. Fernández Histéresis higroscópica de la madera antigua de p.sylvestris l , 2004 .

[18]  W. Mcminn,et al.  Thermodynamic properties of moisture sorption of potato , 2003 .

[19]  N. Sanjuán,et al.  Equilibrium isotherms and isosteric heats of morel (Morchella esculenta) , 2002 .

[20]  S. Zhang,et al.  Differences in wood properties between juvenile wood and mature wood in 10 species grown in China , 2001, Wood Science and Technology.

[21]  K. M. Bhat,et al.  Characterisation of juvenile wood in teak , 2001, Wood Science and Technology.

[22]  F. Kaymak-Ertekin,et al.  Moisture sorption isotherm characteristics of peppers , 2001 .

[23]  Jean-Dominique Daudin,et al.  Development of a new method for fast measurement of water sorption isotherms in the high humidity range Validation on gelatine gel , 2000 .

[24]  E. Fabisiak,et al.  Radial variation of earlywood vessel lumen diameter as an indicator of the juvenile growth period in ash (Fraxinus excelsior L.) , 1999, Holz als Roh- und Werkstoff.

[25]  P. E. Viollaz,et al.  Equilibrium sorption isotherms and thermodynamic properties of starch and gluten , 1999 .

[26]  G. Vázquez,et al.  Desorption isotherms of muscatel and aledo grapes, and the influence of pretreatments on muscatel isotherms , 1999 .

[27]  Medeni Maskan,et al.  The fitting of various models to water sorption isotherms of pistachio nut paste , 1997 .

[28]  Andy W. C. Lee,et al.  Thermodynamics of Moisture Sorption by the Giant-Timber Bamboo , 1997 .

[29]  R. Singh,et al.  Application of GAB model for water sorption isotherms of food products. , 1996 .

[30]  John F. Siau,et al.  Wood--influence of moisture on physical properties , 1995 .

[31]  Kazuya Minato,et al.  Moisture Adsorption Thermodynamics of Chemically Modified Wood , 1995 .

[32]  K. Kubota,et al.  Studies on Rheological Properties of Foods , 1994 .

[33]  Chris T. Kiranoudis,et al.  Equilibrium moisture content and heat of desorption of some vegetables , 1993 .

[34]  E. Tsami Net isosteric heat of sorption in dried fruits , 1991 .

[35]  S. Y. Wang,et al.  The wood properties of Japanese cedar originated by seed and vegetative reproduction in Taiwan IV. The variation of the degree of crystallinity of cellulose. , 1990 .

[36]  C. Skaar Wood-Water Relations , 1988, Springer Series in Wood Science.

[37]  J. Smith Moisture Sorption: Practical Aspects of Isotherm Measurement and Use , 1986 .

[38]  H F Steger,et al.  Certified reference materials , 1980 .