A highly potassium-selective ratiometric fluorescent indicator based on BODIPY azacrown ether excitable with visible light.

[structure: see text] A potassium-selective fluorescent BODIPY-linked azacrown ether chemosensor has been synthesized using novel substitution reactions of 3,5-dichloroBODIPY. The indicator absorbs and emits light in the visible wavelength range. The dissociation constant Kd for the complex between K+ and the probe is 0.5 mM in acetonitrile. Quantum chemical calculations show that the experimental hypsochromic shifts in absorption and fluorescence upon potassium binding are due to complexation, which induces a large conformational change of the sensor.

[1]  R. Haugland The Handbook: A Guide to Fluorescent Probes and Labeling Technologies , 2005 .

[2]  W. Rettig,et al.  Design of an efficient charge-transfer processing molecular system containing a weak electron donor: spectroscopic and redox properties and cation-induced fluorescence enhancement , 2000 .

[3]  D. Citterio,et al.  Highly sodium-selective fluoroionophore based on conformational restriction of oligoethyleneglycol-bridged biaryl boron-dipyrromethene. , 2005, Journal of the American Chemical Society.

[4]  H. Falk,et al.  Beiträge zur Chemie der Pyrrolpigmente, 20. Mitt.: Untersuchungen über das Deprotonierungsgleichgewicht und die Bildung von Metallkomplexen von Gallenpigment-Partialstrukturen , 1978 .

[5]  R Y Tsien,et al.  Fluorescent indicators for cytosolic sodium. , 1989, The Journal of biological chemistry.

[6]  K. Rurack,et al.  Ultrafast Charge Transfer in Amino-Substituted Boron Dipyrromethene Dyes and Its Inhibition by Cation Complexation: A New Design Concept for Highly Sensitive Fluorescent Probes , 1998 .

[7]  M. Vincent,et al.  Synthesis and characterisation of Thio-H, a new excitation and emission ratioable fluorescent Ca2+/Mg2+ indicator with high brightness , 2002 .

[8]  R. Haugland,et al.  Fluorescent membrane probes incorporating dipyrrometheneboron difluoride fluorophores. , 1991, Analytical biochemistry.

[9]  Mark A Miller,et al.  Refined Synthesis of 5-Substituted Dipyrromethanes , 1999 .

[10]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines , 1973 .

[11]  L. Johansson,et al.  Fluorescence and Absorption Spectroscopic Properties of Dipyrrometheneboron Difluoride (BODIPY) Derivatives in Liquids, Lipid Membranes, and Proteins , 1994 .

[12]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[13]  F. Kreuzer,et al.  Difluorboryl‐Komplexe von Di‐ und Tripyrrylmethenen , 1968 .

[14]  F. Voegtle,et al.  Chromo- and fluoroionophores. A new class of dye reagents , 1985 .

[15]  W. Qin,et al.  BODIPY-based hydroxyaryl derivatives as fluorescent pH probes. , 2005, The Journal of organic chemistry.

[16]  F. D. De Schryver,et al.  Photophysics of the fluorescent K+ indicator PBFI. , 1995, Biophysical journal.

[17]  Otto S. Wolfbeis,et al.  Optical sensors: An ion-selective optrode for potassium , 1987 .

[18]  T. Pavlopoulos,et al.  Laser action from a tetramethylpyrromethene-BF(2) complex. , 1988, Applied optics.