Multispectral Compressive Imaging Strategies Using Fabry–Pérot Filtered Sensors

In this paper, we introduce two novel acquisition schemes for multispectral compressive imaging. Unlike most existing methods, the proposed computational imaging techniques do not include any dispersive element, as they use a dedicated sensor that integrates narrowband Fabry–Pérot spectral filters at the pixel level. The first scheme leverages joint inpainting and superresolution to fill in those voxels that are missing due to the device's limited pixel count. The second scheme introduces spatial random convolutions in link with the framework of compressive sensing, but is more complex and may be limited by diffraction. In both cases, we solve the associated inverse problems by using the same signal prior and recovery algorithm. Specifically, we propose a redundant, analysis-sparse signal prior in a convex formulation. We validate our schemes through numerical simulation in different realistic setups. Moreover, we highlight some practical guidelines and discuss complexity tradeoffs to integrate these schemes into actual computational imaging systems. Our conclusion is that the second technique performs best when targeting high compression levels if embodied in a properly designed and calibrated setup. Otherwise the first, simpler technique should be favored.

[1]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[2]  H. P. Waran A New Form of Interferometer , 1922 .

[3]  Carolina Blanch,et al.  A tiny VIS-NIR snapshot multispectral camera , 2015, Photonics West - Optoelectronic Materials and Devices.

[4]  Wai Lam Chan,et al.  A single-pixel terahertz imaging system based on compressed sensing , 2008 .

[5]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[6]  M E Gehm,et al.  Compressive sensing in the EO/IR. , 2015, Applied optics.

[7]  Eustace L. Dereniak,et al.  Hyperspectral imaging for astronomy and space surviellance , 2004, SPIE Optics + Photonics.

[8]  Pierre Vandergheynst,et al.  Hyperspectral image compressed sensing via low-rank and joint-sparse matrix recovery , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[9]  Laurent Jacques,et al.  CMOS compressed imaging by Random Convolution , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[10]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[11]  Mário A. T. Figueiredo,et al.  Deconvolving Images With Unknown Boundaries Using the Alternating Direction Method of Multipliers , 2012, IEEE Transactions on Image Processing.

[12]  J. Goodman Introduction to Fourier optics , 1969 .

[13]  Thomas Strohmer,et al.  Self-calibration and biconvex compressive sensing , 2015, ArXiv.

[14]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[15]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[16]  Henry Arguello,et al.  Snapshot colored compressive spectral imager. , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  Dennis W Prather,et al.  Development of a digital-micromirror-device-based multishot snapshot spectral imaging system. , 2011, Optics letters.

[18]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[19]  Andy Lambrechts,et al.  A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic , 2014, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[20]  James E. Fowler,et al.  Compressive pushbroom and whiskbroom sensing for hyperspectral remote-sensing imaging , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[21]  Enrico Magli,et al.  A parallel compressive imaging architecture for one-shot acquisition , 2013, 2013 Picture Coding Symposium (PCS).

[22]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[23]  Shree K. Nayar,et al.  Programmable Aperture Camera Using LCoS , 2010, IPSJ Trans. Comput. Vis. Appl..

[24]  Michael W. Kudenov,et al.  Review of snapshot spectral imaging technologies , 2013, Optics and Precision Engineering.

[25]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[26]  Ashwin A. Wagadarikar,et al.  Single disperser design for coded aperture snapshot spectral imaging. , 2008, Applied optics.

[27]  M E Gehm,et al.  Single-shot compressive spectral imaging with a dual-disperser architecture. , 2007, Optics express.

[28]  Laurent Jacques,et al.  Non-parametric PSF estimation from celestial transit solar images using blind deconvolution , 2014, ArXiv.

[29]  Kallol Bhattacharya,et al.  Optical processing using a birefringence-based spatial filter , 1994 .

[30]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[31]  R. M. Willett,et al.  Compressed sensing for practical optical imaging systems: A tutorial , 2011, IEEE Photonics Conference 2012.

[32]  Michael Elad,et al.  The Cosparse Analysis Model and Algorithms , 2011, ArXiv.

[33]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[34]  Shree K. Nayar,et al.  Generalized Assorted Pixel Camera: Postcapture Control of Resolution, Dynamic Range, and Spectrum , 2010, IEEE Transactions on Image Processing.

[35]  R. Dicke SCATTER-HOLE CAMERAS FOR X-RAYS AND GAMMA RAYS. , 1968 .

[36]  Rebecca Willett,et al.  Compressive coded aperture imaging , 2009, Electronic Imaging.

[37]  Pablo Zarco-Tejada,et al.  Hyperspectral mapping of crop and soils for precision agriculture , 2006, SPIE Optics + Photonics.

[38]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[39]  Andy Lambrechts,et al.  A snapshot multispectral imager with integrated tiled filters and optical duplication , 2013, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[40]  Justin K. Romberg,et al.  Restricted Isometries for Partial Random Circulant Matrices , 2010, ArXiv.

[41]  Brian Keelan,et al.  Handbook of Image Quality: Characterization and Prediction , 2002 .

[42]  Justin K. Romberg,et al.  Compressive Sensing by Random Convolution , 2009, SIAM J. Imaging Sci..

[43]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[44]  S. Mallat A wavelet tour of signal processing , 1998 .

[45]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[46]  Valerio Cambareri,et al.  A greedy blind calibration method for compressed sensing with unknown sensor gains , 2016, 2017 IEEE International Symposium on Information Theory (ISIT).

[47]  Petra Tatzer,et al.  Inline sorting with hyperspectral imaging in an industrial environment , 2005, IS&T/SPIE Electronic Imaging.

[48]  Guillermo Sapiro,et al.  Filling-in by joint interpolation of vector fields and gray levels , 2001, IEEE Trans. Image Process..

[49]  Laurent Jacques,et al.  Through the Haze: A Non-Convex Approach to Blind Calibration for Linear Random Sensing Models , 2016, ArXiv.

[50]  Henry Arguello,et al.  Compressive spectral imaging with colored-patterned detectors , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[51]  Xiaobai Sun,et al.  Video rate spectral imaging using a coded aperture snapshot spectral imager. , 2009, Optics express.

[52]  Laurent Jacques,et al.  Compressive Hyperspectral Imaging by Out-of-Focus Modulations and Fabry-Pérot Spectral Filters , 2014 .

[53]  R Glenn Sellar,et al.  Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer. , 2005, Applied optics.

[54]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[55]  Peg Shippert Why Use Hyperspectral Imagery , 2004 .

[56]  Henry Arguello,et al.  Compressive Coded Aperture Spectral Imaging: An Introduction , 2014, IEEE Signal Processing Magazine.

[57]  Adrian Stern,et al.  Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains. , 2013, Applied optics.

[58]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[59]  C. Fabry,et al.  On a New Form of Interferometer , 1901 .

[60]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[61]  Thomas Strohmer,et al.  General Deviants: An Analysis of Perturbations in Compressed Sensing , 2009, IEEE Journal of Selected Topics in Signal Processing.

[62]  Philippe Soussan,et al.  A CMOS-compatible, integrated approach to hyper- and multispectral imaging , 2014, 2014 IEEE International Electron Devices Meeting.

[63]  K. Kelly,et al.  Compressive Sensing Hyperspectral Imager , 2009 .

[64]  Mohamed-Jalal Fadili,et al.  The Undecimated Wavelet Decomposition and its Reconstruction , 2007, IEEE Transactions on Image Processing.

[65]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[66]  G. Fowles,et al.  Introduction to modern optics , 1968 .

[67]  Colm P. O'Donnell,et al.  Hyperspectral imaging – an emerging process analytical tool for food quality and safety control , 2007 .

[68]  Guolan Lu,et al.  Medical hyperspectral imaging: a review , 2014, Journal of biomedical optics.

[69]  T. M. Cannon,et al.  Coded aperture imaging with uniformly redundant arrays. , 1978, Applied optics.

[70]  Laurent Jacques,et al.  Generalized inpainting method for hyperspectral image acquisition , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[71]  Laurent Jacques,et al.  Blind Deconvolution of PET Images using Anatomical Priors , 2016, ArXiv.