Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer.

PURPOSE The occurrence of KRAS mutation is predictive of nonresponse and shorter survival in patients treated by anti-epidermal growth factor receptor (anti-EGFR) antibody for metastatic colorectal cancer (mCRC), leading the European Medicine Agency to limit its use to patients with wild-type KRAS tumors. However, only half of these patients will benefit from treatment, suggesting the need to identify additional biomarkers for cetuximab-based treatment efficacy. PATIENTS AND METHODS We retrospectively collected tumors from 173 patients with mCRC. All but one patient received a cetuximab-based regimen as second-line or greater therapy. KRAS and BRAF status were assessed by allelic discrimination. EGFR amplification was assessed by chromogenic in situ hybridization and fluorescent in situ hybridization, and the expression of PTEN was assessed by immunochemistry. RESULTS In patients with KRAS wild-type tumors (n = 116), BRAF mutations (n = 5) were weakly associated with lack of response (P = .063) but were strongly associated with shorter progression-free survival (P < .001) and shorter overall survival (OS; P < .001). A high EGFR polysomy or an EGFR amplification was found in 17.7% of the patients and was associated with response (P = .015). PTEN null expression was found in 19.9% of the patients and was associated with shorter OS (P = .013). In multivariate analysis, BRAF mutation and PTEN expression status were associated with OS. CONCLUSION BRAF status, EGFR amplification, and cytoplasmic expression of PTEN were associated with outcome measures in KRAS wild-type patients treated with a cetuximab-based regimen. Subsequent studies in clinical trial cohorts will be required to confirm the clinical utility of these markers.

[1]  L. Mazzucchelli,et al.  Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  F. Siannis,et al.  Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. , 2008, The Lancet. Oncology.

[3]  E. Van Cutsem,et al.  Clinical Usefulness of EGFR Gene Copy Number as a Predictive Marker in Colorectal Cancer Patients Treated with Cetuximab: A Fluorescent In situ Hybridization Study , 2008, Clinical Cancer Research.

[4]  Andrew J. Wilson,et al.  Erratum: PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. (Cancer Res (2008) 68 (1953-61)) , 2008 .

[5]  G. Fountzilas,et al.  Potential value of PTEN in predicting cetuximab response in colorectal cancer: An exploratory study , 2008, BMC Cancer.

[6]  R. Herbst,et al.  Increased EGFR gene copy number detected by fluorescent in situ hybridization predicts outcome in non-small-cell lung cancer patients treated with cetuximab and chemotherapy. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  P. Jänne,et al.  Primary resistance to cetuximab therapy in EGFR FISH-positive colorectal cancer patients , 2008, British Journal of Cancer.

[8]  Pierre Laurent-Puig,et al.  Mutations in the RAS‐MAPK, PI(3)K (phosphatidylinositol‐3‐OH kinase) signaling network correlate with poor survival in a population‐based series of colon cancers , 2008, International journal of cancer.

[9]  Daniel J. Freeman,et al.  Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[10]  Sanjay Goel,et al.  PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. , 2008, Cancer research.

[11]  E. Van Cutsem,et al.  KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. , 2008, Annals of oncology : official journal of the European Society for Medical Oncology.

[12]  A. Italiano,et al.  Cetuximab Shows Activity in Colorectal Cancer Patients With Tumors for Which FISH Analysis Does Not Detect an Increase in EGFR Gene Copy Number , 2008, Annals of Surgical Oncology.

[13]  A. Lièvre,et al.  KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[14]  F. Cavalli,et al.  PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients , 2007, British Journal of Cancer.

[15]  M. Moroni,et al.  Epidermal growth factor receptor gene copy number and clinical outcome of metastatic colorectal cancer treated with panitumumab. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  Manuel Hidalgo,et al.  Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  Marc Peeters,et al.  Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[18]  F. Blanchard,et al.  Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy , 2007, British Journal of Cancer.

[19]  Silvia Benvenuti,et al.  Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. , 2007, Cancer research.

[20]  Jennifer Herrick,et al.  Association of smoking, CpG island methylator phenotype, and V600E BRAF mutations in colon cancer. , 2006, Journal of the National Cancer Institute.

[21]  E. Van Cutsem,et al.  Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  F. Cappuzzo,et al.  Combination of EGFR gene copy number and protein expression predicts outcome for advanced non-small-cell lung cancer patients treated with gefitinib. , 2006, Annals of oncology : official journal of the European Society for Medical Oncology.

[23]  A. Lièvre,et al.  KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. , 2006, Cancer research.

[24]  M. Moroni,et al.  Anti-EGFR monoclonal antibodies in the treatment of non-small cell lung cancer. , 2006, Annals of oncology : official journal of the European Society for Medical Oncology.

[25]  Todd R. Golub,et al.  BRAF mutation predicts sensitivity to MEK inhibition , 2006, Nature.

[26]  Koji Yoshimoto,et al.  Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. , 2005, The New England journal of medicine.

[27]  S. Groshen,et al.  Molecular determinants of cetuximab efficacy. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  Silvia Benvenuti,et al.  Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. , 2005, The Lancet. Oncology.

[29]  E. Rowinsky Targeting the molecular target of rapamycin (mTOR) , 2004, Current opinion in oncology.

[30]  E. Van Cutsem,et al.  Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. , 2004, The New England journal of medicine.

[31]  William R Sellers,et al.  The biology and clinical relevance of the PTEN tumor suppressor pathway. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[32]  Ming Tan,et al.  PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. , 2004, Cancer cell.

[33]  C. Morrison,et al.  PTEN mutations are common in sporadic microsatellite stable colorectal cancer , 2004, Oncogene.

[34]  G. Deng,et al.  BRAF Mutation Is Frequently Present in Sporadic Colorectal Cancer with Methylated hMLH1, But Not in Hereditary Nonpolyposis Colorectal Cancer , 2004, Clinical Cancer Research.

[35]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[36]  L. Saltz,et al.  Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. , 2000, The New England journal of medicine.

[37]  G. Mills,et al.  Improved classification of breast cancer by analysis of genetic alterations and gene expression profiling , 2011 .

[38]  S. Andreola,et al.  PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. , 2009, Annals of oncology : official journal of the European Society for Medical Oncology.

[39]  P. Jänne,et al.  EGFR FISH assay predicts for response to cetuximab in chemotherapy refractory colorectal cancer patients. , 2008, Annals of oncology : official journal of the European Society for Medical Oncology.