Influence of the effective layer thickness on the ground-state and excitonic properties of transition-metal dichalcogenide systems

A self-consistent scheme for the calculations of the interacting groundstate and the near bandgap optical spectra of mono- and multilayer transition-metal-dichalcogenide systems is presented. The approach combines a dielectric model for the Coulomb interaction potential in a multilayer environment, gap equations for the renormalized groundstate, and the Dirac-Wannier-equation to determine the excitonic properties. To account for the extension of the individual monolayers perpendicular to their basic plane, an effective thickness parameter in the Coulomb interaction potential is introduced. Numerical evaluations for the example of MoS$_2$ show that the resulting finite size effects lead to significant modifications in the optical spectra, reproducing the experimentally observed non hydrogenic features of the excitonic resonance series. Applying the theory for multi-layer configurations, a consistent description of the near bandgap optical properties is obtained all the way from monolayer to bulk. In addition to the well-known in-plane excitons, also interlayer excitons occur in multilayer systems suggesting a reinterpretation of experimental results obtained for bulk material.

[1]  Á. Rubio,et al.  Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane , 2011, 1104.3346.

[2]  A. Krasheninnikov,et al.  Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles , 2012 .

[3]  Soon Cheol Hong,et al.  Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H- M X 2 semiconductors ( M = Mo, W; X = S, Se, Te) , 2012 .

[4]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[5]  K. Thygesen,et al.  Dielectric Genome of van der Waals Heterostructures. , 2015, Nano letters.

[6]  L. Mattheiss Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. , 1973 .

[7]  S. Koch,et al.  Optical Response and Ground State of Graphene , 2011, 1109.0395.

[8]  Wei Ruan,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[9]  R. Pandey,et al.  Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide (MoS2) Thin Films , 2015 .

[10]  A. Kis,et al.  Magnetoexcitons in large area CVD-grown monolayer MoS 2 and MoSe 2 on sapphire , 2016, 1602.01220.

[11]  A. MacDonald,et al.  Exciton band structure of monolayer MoS$_2$ , 2015, 1501.02273.

[12]  Kristian Sommer Thygesen,et al.  Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides , 2015, 1506.02841.

[13]  Di Xiao,et al.  Berry Phase Modification to the Energy Spectrum of Excitons. , 2015, Physical review letters.

[14]  M. Rohlfing,et al.  Interlayer excitons in a bulk van der Waals semiconductor , 2017, Nature Communications.

[15]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[16]  F. Guinea,et al.  Tight-binding model and direct-gap/indirect-gap transition in single-layer and multilayer MoS 2 , 2013, 1304.4831.

[17]  Rui Dong,et al.  Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems , 2017, Journal of vacuum science and technology. B, Nanotechnology & microelectronics : materials, processing, measurement, & phenomena : JVST B.

[18]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[19]  A. Anedda,et al.  Optical spectra in WSe2 , 1979 .

[20]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[21]  S. Koch,et al.  Optically bright p-excitons indicating strong Coulomb coupling in transition-metal dichalcogenides , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  Steven G. Louie,et al.  Probing excitonic dark states in single-layer tungsten disulphide , 2014, Nature.

[23]  B. Jonker,et al.  Valley polarization and intervalley scattering in monolayer MoS$_{2}$ , 2012 .

[24]  J. Knights,et al.  Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination , 1972 .

[25]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[26]  G. Wang,et al.  Giant enhancement of the optical second-harmonic emission of WSe(2) monolayers by laser excitation at exciton resonances. , 2015, Physical review letters.

[27]  L. Golub,et al.  Intrinsic exciton-state mixing and nonlinear optical properties in transition metal dichalcogenide monolayers , 2016, 1610.06780.

[28]  E. Davis,et al.  Electromodulation Spectroscopy of Excitons: Molybdenum Disulphide , 1973 .

[29]  Wang Yao,et al.  Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides , 2012, Scientific Reports.

[30]  Sandip Ghosh,et al.  Exciton binding energy in bulk MoS2: A reassessment , 2016 .

[31]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .

[32]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[33]  C. Robert,et al.  Ultra-low power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides , 2016, 1606.09554.

[34]  F. Raga,et al.  Excitons in molybdenum disulphide , 1975 .

[35]  R. Ghosh,et al.  Monolayer Transition Metal Dichalcogenide Channel-Based Tunnel Transistor , 2013, IEEE Journal of the Electron Devices Society.

[36]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[37]  A. Neto,et al.  Excitonic collapse in semiconducting transition-metal dichalcogenides , 2013, 1305.4278.

[38]  K. Thygesen,et al.  Excitons in van der Waals heterostructures: The important role of dielectric screening , 2015, 1509.07972.

[39]  Timothy C. Berkelbach,et al.  Theory of neutral and charged excitons in monolayer transition metal dichalcogenides , 2013, 1305.4972.

[40]  Friedhelm Bechstedt,et al.  Strong excitons in novel two-dimensional crystals: Silicane and germanane , 2012 .

[41]  A. Anedda,et al.  Exciton spectra in MoSe2 , 1980 .

[42]  B. L. Evans,et al.  The Band Edge Excitons in 2HMoS2 , 1976 .

[43]  S. Louie,et al.  Screening and many-body effects in two-dimensional crystals: Monolayer MoS 2 , 2016, 1605.08733.

[44]  A. Burger,et al.  Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy , 2014, Scientific Reports.

[45]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[46]  Yong-Wei Zhang,et al.  Quasiparticle band structures and optical properties of strained monolayer MoS 2 and WS 2 , 2012, 1211.5653.

[47]  Xiaodong Cui,et al.  Exciton Binding Energy of Monolayer WS2 , 2014, Scientific Reports.

[48]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .