Curvature sensing as an emergent property of multiscale assembly of septins

Significance Cells use their membrane curvature to coordinate the activation and spatiotemporal compartmentalization of molecules during key cellular processes. Recent works have identified different proteins that can sense or induce membrane curvature from nanometer to micrometer scale. Septins are nanoscopic cytoskeletal proteins that preferentially bind to membranes with a narrow range of micrometer-scale curvatures. Yet, the sensing mechanism remains ambiguous. Using a combination of microscopy and kinetic modeling, we show that, unlike most proteins that sense curvature in a single protein scale, curvature sensing in septins emerges from their multistep hierarchical assembly on the membrane. This introduces a protein localization scheme where the same protein can be deployed for differential binding sensitivities in different cellular contexts.

[1]  A. Gladfelter,et al.  Reconstitution of Septin Assembly at Membranes to Study Biophysical Properties and Functions. , 2022, Journal of Visualized Experiments.

[2]  M. Momany,et al.  Septins From Protists to People , 2022, Frontiers in Cell and Developmental Biology.

[3]  B. Benoit,et al.  Cdc42 and its BORG2 and BORG3 effectors control the subcellular localization of septins between actin stress fibers and microtubules , 2021, Current Biology.

[4]  S. Mostowy,et al.  Mechanistic insight into bacterial entrapment by septin cage reconstitution , 2021, Nature Communications.

[5]  E. Spiliotis,et al.  Spatial regulation of microtubule-dependent transport by septin GTPases. , 2021, Trends in cell biology.

[6]  E. Spiliotis,et al.  Cellular functions of actin- and microtubule-associated septins , 2021, Current Biology.

[7]  A. Gladfelter,et al.  Biophysical properties governing septin assembly , 2021, bioRxiv.

[8]  S. Scheuring,et al.  The hierarchical assembly of septins revealed by high-speed AFM , 2020, Nature Communications.

[9]  M. Mavrakis,et al.  Membrane binding controls ordered self-assembly of animal septins , 2020, bioRxiv.

[10]  Lauren S. Ryder,et al.  Discovery of broad-spectrum fungicides that block septin-dependent infection processes of pathogenic fungi , 2020, Nature Microbiology.

[11]  T. Matsoukas The Smoluchowski Ensemble—Statistical Mechanics of Aggregation , 2020, Entropy.

[12]  T. Svitkina,et al.  Critical Roles of a RhoGEF-Anillin Module in Septin Architectural Remodeling during Cytokinesis , 2020, Current Biology.

[13]  Daniel Lévy,et al.  Membrane reshaping by micrometric curvature sensitive septin filaments , 2019, Nature Communications.

[14]  A. Gladfelter,et al.  An amphipathic helix enables septins to sense micrometer-scale membrane curvature , 2019, The Journal of cell biology.

[15]  G. Rancati,et al.  Recruitment of the mitotic exit network to yeast centrosomes couples septin displacement to actomyosin constriction , 2018, Nature Communications.

[16]  E. Bi,et al.  Architecture, remodeling, and functions of the septin cytoskeleton , 2018, Cytoskeleton.

[17]  P. Cossart,et al.  SUMOylation of human septins is critical for septin filament bundling and cytokinesis , 2017, The Journal of cell biology.

[18]  N. Talbot,et al.  Septins Focus Cellular Growth for Host Infection by Pathogenic Fungi , 2017, Front. Cell Dev. Biol..

[19]  Johannes Schindelin,et al.  TrackMate: An open and extensible platform for single-particle tracking. , 2017, Methods.

[20]  Y. Jan,et al.  TAOK2 Kinase Mediates PSD95 Stability and Dendritic Spine Maturation through Septin7 Phosphorylation , 2017, Neuron.

[21]  Patrick W. Oakes,et al.  Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton , 2016, The Journal of cell biology.

[22]  Kumaran S Ramamurthi,et al.  Structural basis for the geometry-driven localization of a small protein , 2015, Proceedings of the National Academy of Sciences.

[23]  Satoshi Okada,et al.  Architecture and dynamic remodeling of the septin cytoskeleton during the cell cycle , 2014, Nature Communications.

[24]  S. Vanni,et al.  A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment , 2014, Nature Communications.

[25]  M. Gullberg,et al.  Cell type–specific expression of SEPT3-homology subgroup members controls the subunit number of heteromeric septin complexes , 2014, Molecular biology of the cell.

[26]  Shalin B. Mehta,et al.  Septin assemblies form by diffusion-driven annealing on membranes , 2014, Proceedings of the National Academy of Sciences.

[27]  C. Etchebest,et al.  Conical lipids in flat bilayers induce packing defects similar to that induced by positive curvature. , 2013, Biophysical journal.

[28]  E. Nogales,et al.  Subunit-dependent modulation of septin assembly: Budding yeast septin Shs1 promotes ring and gauze formation , 2011, The Journal of cell biology.

[29]  G. Voth,et al.  Mechanism of membrane curvature sensing by amphipathic helix containing proteins. , 2011, Biophysical journal.

[30]  C. Zimmer,et al.  Entrapment of intracytosolic bacteria by septin cage-like structures. , 2010, Cell host & microbe.

[31]  Tom Alber,et al.  Saccharomyces cerevisiae septins: Supramolecular organization of heterooligomers and the mechanism of filament assembly , 2008, Proceedings of the National Academy of Sciences.

[32]  Wenbo Yu,et al.  Phylogenetic and evolutionary analysis of the septin protein family in metazoan , 2007, FEBS letters.

[33]  M. Sheng,et al.  Role of Septin Cytoskeleton in Spine Morphogenesis and Dendrite Development in Neurons , 2007, Current Biology.

[34]  M. Kiebler,et al.  The GTP-Binding Protein Septin 7 Is Critical for Dendrite Branching and Dendritic-Spine Morphology , 2007, Current Biology.

[35]  M. Steinmetz,et al.  The Caenorhabditis elegans septin complex is nonpolar , 2007, The EMBO journal.

[36]  M. Momany,et al.  Analysis of septins across kingdoms reveals orthology and new motifs , 2007, BMC Evolutionary Biology.

[37]  G. Drin,et al.  A general amphipathic α-helical motif for sensing membrane curvature , 2007, Nature Structural &Molecular Biology.

[38]  Ralf Langen,et al.  Mechanism of endophilin N‐BAR domain‐mediated membrane curvature , 2006, The EMBO journal.

[39]  G. Drin,et al.  ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif , 2005, The EMBO journal.

[40]  Amy S. Gladfelter,et al.  Interplay between septin organization, cell cycle and cell shape in yeast , 2005, Journal of Cell Science.

[41]  C. Haass,et al.  α-Synuclein Has a High Affinity for Packing Defects in a Bilayer Membrane , 2004, Journal of Biological Chemistry.

[42]  B. Peter,et al.  BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure , 2004, Science.

[43]  P. De Camilli,et al.  Generation of high curvature membranes mediated by direct endophilin bilayer interactions , 2001, The Journal of cell biology.

[44]  Chandra L. Theesfeld,et al.  Septin-Dependent Assembly of a Cell Cycle-Regulatory Module in Saccharomyces cerevisiae , 2000, Molecular and Cellular Biology.

[45]  M. Longtine,et al.  The septins: roles in cytokinesis and other processes. , 1996, Current opinion in cell biology.

[46]  B. Haarer,et al.  Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother-bud neck , 1987, Molecular and cellular biology.

[47]  M. Smoluchowski Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen , 1918 .

[48]  J. Pringle,et al.  The nonopisthokont septins: How many there are, how little we know about them, and how we might learn more. , 2016, Methods in cell biology.