A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis

Stabilized finite element methods have been shown to yield robust, accurate numerical solutions to both the compressible and incompressible Navier-Stokes equations for laminar and turbulent flows. The present work focuses on the application of higher-order, hierarchical basis functions to the incompressible Navier-Stokes equations using a stabilized finite element method. It is shown on a variety of problems that the most cost-effective simulations (in terms of CPU time, memory, and disk storage) can be obtained using higher-order basis functions when compared with the traditional linear basis. In addition, algorithms will be presented for the efficient implementation of these methods within the traditional finite element data structures

[1]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[2]  K. Jansen A stabilized finite element method for computing turbulence , 1999 .

[3]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[4]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[5]  Thomas J. R. Hughes,et al.  Implementation of a one-equation turbulence model within a stabilized finite element formulation of a symmetric advective-diffusive system☆ , 1993 .

[6]  P. Gresho Some current CFD issues relevant to the incompressible Navier-Stokes equations , 1991 .

[7]  P. Carnevali,et al.  New basis functions and computational procedures for p‐version finite element analysis , 1993 .

[8]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[9]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[10]  D. Gartling A test problem for outflow boundary conditions—flow over a backward-facing step , 1990 .

[11]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[12]  Thomas J. R. Hughes,et al.  Finite element modeling of blood flow in arteries , 1998 .

[13]  L. Kovasznay Laminar flow behind a two-dimensional grid , 1948 .

[14]  Mark S. Shephard,et al.  a General Topology-Based Mesh Data Structure , 1997 .

[15]  Alessandro Russo,et al.  Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations , 1996 .

[16]  Christian H. Whiting,et al.  STABILIZED FINITE ELEMENT METHODS FOR FLUID DYNAMICS USING A HIERARCHICAL BASIS , 1999 .

[17]  Kenneth E. Jansen,et al.  A better consistency for low-order stabilized finite element methods , 1999 .

[18]  Ivo Babuška,et al.  The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron , 1995 .

[19]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[20]  Franco Brezzi,et al.  $b=\int g$ , 1997 .

[21]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[22]  M. Shephard,et al.  A straightforward structure to construct shape functions for variable p-order meshes , 1997 .

[23]  William Gropp,et al.  Skjellum using mpi: portable parallel programming with the message-passing interface , 1994 .

[24]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .