Semideenite Programming and Graph Equipartition

Semideenite relaxations are used to approximate the problem of partitioning a graph into equally sized components. The relax-ations extend previous eigenvalue based models, and combine semidee-nite and polyhedral approaches. Computational results on graphs with several hundred vertices are given, and indicate that semideenite relax-ations approximate the equipartition problem quite well.

[1]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[2]  J. P. Williams,et al.  Some convexity theorems for matrices , 1971, Glasgow Mathematical Journal.

[3]  A. Hoffman,et al.  Lower bounds for the partitioning of graphs , 1973 .

[4]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[5]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[6]  Thomas Lengauer,et al.  Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.

[7]  Michael L. Overton,et al.  On the Sum of the Largest Eigenvalues of a Symmetric Matrix , 1992, SIAM J. Matrix Anal. Appl..

[8]  M. R. Rao,et al.  The partition problem , 1993, Math. Program..

[9]  Byung Ro Moon,et al.  A Genetic Algorithm for a Special Class of the Quadratic Assignment Problem , 1993, Quadratic Assignment and Related Problems.

[10]  R. Vanderbei,et al.  An Interior-point Method for Semideenite Programming an Interior-point Method for Semideenite Programming , 1994 .

[11]  Franz Rendl,et al.  A computational study of graph partitioning , 1994, Math. Program..

[12]  C. Helmberg An Interior Point Method for Semidefinite Programming and Max-Cut Bounds , 1994 .

[13]  D. Welsh,et al.  A Spectral Technique for Coloring Random 3-Colorable Graphs , 1994 .

[14]  Franz Rendl,et al.  Combining Semidefinite and Polyhedral Relaxations for Integer Programs , 1995, IPCO.

[15]  Shinji Hara,et al.  Interior Point Methods for the Monotone Linear Complementarity Problem in Symmetric Matrices , 1995 .

[16]  Franz Rendl,et al.  A projection technique for partitioning the nodes of a graph , 1995, Ann. Oper. Res..

[17]  Franz Rendl,et al.  Nonpolyhedral Relaxations of Graph-Bisection Problems , 1995, SIAM J. Optim..

[18]  Alan M. Frieze,et al.  Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION , 1995, IPCO.

[19]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[20]  Byung Ro Moon,et al.  Genetic Algorithm and Graph Partitioning , 1996, IEEE Trans. Computers.

[21]  Franz Rendl,et al.  Connections between semidefinite relaxations of the max-cut and stable set problems , 1997, Math. Program..

[22]  Giovanni Rinaldi,et al.  A branch-and-cut algorithm for the equicut problem , 1997, Math. Program..

[23]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1998, JACM.