Scalable Nonlinear Programming via Exact Differentiable Penalty Functions and Trust-Region Newton Methods

We present an approach for nonlinear programming based on the direct minimization of an exact differentiable penalty function using trust-region Newton techniques. The approach provides desirable features required for scalability: it can detect and exploit directions of negative curvature, it is superlinearly convergent, and it enables the scalable computation of the Newton step through iterative linear algebra. Moreover, it presents features that are desirable for parametric optimization problems that must be solved in a latency-limited environment, as is the case for model predictive control and mixed-integer nonlinear programming. These features are fast detection of activity, efficient warm starting, and progress on a primal-dual merit function at every iteration. We note that other algorithmic approaches fail to satisfy at least one of these features. We derive general convergence results for our approach and demonstrate its behavior through numerical studies.

[1]  Anders Forsgren,et al.  Iterative Solution of Augmented Systems Arising in Interior Methods , 2007, SIAM J. Optim..

[2]  Danny C. Sorensen,et al.  A New Matrix-Free Algorithm for the Large-Scale Trust-Region Subproblem , 2000, SIAM J. Optim..

[3]  M. Anitescu,et al.  Formulating Dynamic Multi-Rigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems , 1997 .

[4]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[5]  Jorge Nocedal,et al.  An algorithm for the fast solution of symmetric linear complementarity problems , 2008, Numerische Mathematik.

[6]  J. J. Moré,et al.  On the identification of active constraints , 1988 .

[7]  Toshiyuki Ohtsuka,et al.  A continuation/GMRES method for fast computation of nonlinear receding horizon control , 2004, Autom..

[8]  Jon W. Tolle,et al.  Exact penalty functions in nonlinear programming , 1973, Math. Program..

[9]  Mihai Anitescu,et al.  A preconditioning technique for Schur complement systems arising in stochastic optimization , 2012, Comput. Optim. Appl..

[10]  Jacek Gondzio,et al.  Reoptimization With the Primal-Dual Interior Point Method , 2002, SIAM J. Optim..

[11]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[12]  L. Biegler,et al.  Nonlinear Programming Strategies for State Estimation and Model Predictive Control , 2009 .

[13]  Alexey F. Izmailov,et al.  Inexact Josephy–Newton framework for generalized equations and its applications to local analysis of Newtonian methods for constrained optimization , 2010, Comput. Optim. Appl..

[14]  L. Grippo,et al.  A New Class of Augmented Lagrangians in Nonlinear Programming , 1979 .

[15]  Nicholas I. M. Gould,et al.  Numerical experiments with the LANCELOT package (release A) for large-scale nonlinear optimization , 1996, Math. Program..

[16]  V. Torczon,et al.  A GLOBALLY CONVERGENT AUGMENTED LAGRANGIAN ALGORITHM FOR OPTIMIZATION WITH GENERAL CONSTRAINTS AND SIMPLE BOUNDS , 2002 .

[17]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[18]  Philip E. Gill,et al.  Practical optimization , 1981 .

[19]  Chih-Jen Lin,et al.  Newton's Method for Large Bound-Constrained Optimization Problems , 1999, SIAM J. Optim..

[20]  Chih-Jen Lin,et al.  Incomplete Cholesky Factorizations with Limited Memory , 1999, SIAM J. Sci. Comput..

[21]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[22]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[23]  Hans Joachim Ferreau,et al.  Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation , 2009 .

[24]  L. Grippo,et al.  Exact penalty functions in constrained optimization , 1989 .

[25]  Stephen G. Nash,et al.  SUMT (Revisited) , 1998, Oper. Res..

[26]  Stephen J. Wright,et al.  Application of Interior-Point Methods to Model Predictive Control , 1998 .

[27]  Jorge Nocedal,et al.  An interior algorithm for nonlinear optimization that combines line search and trust region steps , 2006, Math. Program..

[28]  L. Grippo,et al.  A Continuously Differentiable Exact Penalty Function for Nonlinear Programming Problems with Inequality Constraints , 1985 .

[29]  Olaf Schenk,et al.  Inertia-Revealing Preconditioning For Large-Scale Nonconvex Constrained Optimization , 2008, SIAM J. Sci. Comput..

[30]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence , 2005, SIAM J. Optim..

[31]  Olaf Schenk,et al.  An Interior-Point Algorithm for Large-Scale Nonlinear Optimization with Inexact Step Computations , 2010, SIAM J. Sci. Comput..

[32]  Victor M. Zavala,et al.  Computational strategies for the optimal operation of large-scale chemical processes , 2008 .

[33]  K. Stüben A review of algebraic multigrid , 2001 .

[34]  José Mario Martínez,et al.  Numerical Comparison of Augmented Lagrangian Algorithms for Nonconvex Problems , 2005, Comput. Optim. Appl..

[35]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[36]  Olaf Schenk,et al.  Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization , 2007, Comput. Optim. Appl..

[37]  Dominique Orban,et al.  The Squared Slacks Transformation in Nonlinear Programming , 2007 .

[38]  Victor M. Zavala,et al.  Real-Time Nonlinear Optimization as a Generalized Equation , 2010, SIAM J. Control. Optim..

[39]  Daniel P. Robinson,et al.  A primal-dual augmented Lagrangian , 2010, Computational Optimization and Applications.

[40]  K. St A review of algebraic multigrid , 2001 .

[41]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[42]  D. Bertsekas Enlarging the region of convergence of Newton's method for constrained optimization , 1982 .

[43]  Gerardo Toraldo,et al.  Convergence properties of trust region methods for linear and convex constraints , 1990, Math. Program..