Trading Off Parallelism and Numerical Stability
暂无分享,去创建一个
[1] P. J. Eberlein. Errata: A Jacobi-Like Method for the Automatic Computation of Eigenvalues and Eigenvectors , 1962 .
[2] R. Brent. Algorithms for matrix multiplication , 1970 .
[3] T. J. Dekker,et al. A floating-point technique for extending the available precision , 1971 .
[4] R. Brent. Error analysis of algorithms for matrix multiplication and triangular decomposition using Winograd's identity , 1970 .
[5] A. Sameh. On Jacobi and Jacobi-I ike Algorithms for a Parallel Computer , 2010 .
[6] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[7] L. Csanky,et al. Fast parallel matrix inversion algorithms , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[8] L. Csanky,et al. Fast Parallel Matrix Inversion Algorithms , 1976, SIAM J. Comput..
[9] R. Brent,et al. Solving Triangular Systems on a Parallel Computer , 1977 .
[10] David J. Kuck,et al. A Parallel QR Algorithm for Symmetric Tridiagonal Matrices , 1977, IEEE Transactions on Computers.
[11] D Parkinson,et al. High–Speed Computing , 1978 .
[12] K. Veselic,et al. A quadratically convergent Jacobi-like method for real matrices with complex eigenvalues , 1979 .
[13] Charles L. Lawson,et al. Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.
[14] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[15] P. Bjørstad,et al. Numerical solution of the biharmonic equation , 1980 .
[16] Dario Bini,et al. Stability of fast algorithms for matrix multiplication , 1980 .
[17] Gene H. Golub,et al. Matrix computations , 1983 .
[18] G. Stewart. A Jacobi-Like Algorithm for Computing the Schur Decomposition of a Nonhermitian Matrix , 1985 .
[19] Jack J. Dongarra,et al. A fully parallel algorithm for the symmetric eigenvalue problem , 1985, PPSC.
[20] Danny C. Sorensen,et al. Analysis of Pairwise Pivoting in Gaussian Elimination , 1985, IEEE Transactions on Computers.
[21] R. Schreiber. Solving Eigenvalue and Singular Value Problems on an Undersized Systolic Array , 1986 .
[22] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[23] G. W. Stewart,et al. A parallel implementation of the QR-algorithm , 1987, Parallel Comput..
[24] Robert A. van de Geijn. Implementing the qr-algorithm on an array of processors , 1987 .
[25] Elizabeth R. Jessup,et al. A Divide and Conquer Algorithm for Computing the Singular Value Decomposition , 1987, SIAM Conference on Parallel Processing for Scientific Computing.
[26] Michael T. Heath. Hypercube multiprocessors 1987 , 1987 .
[27] J. Demmel. On condition numbers and the distance to the nearest ill-posed problem , 2015 .
[28] Patricia J. Eberlein,et al. On the Schur Decomposition of a Matrix for Parallel Computation , 1985, IEEE Transactions on Computers.
[29] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[30] Martin H. Schultz,et al. Numerical Algorithms for Modern Parallel Computer Architectures , 1988 .
[31] Tien-Yien Li,et al. Homotopy method for general l-matrix problems , 1988 .
[32] Robert Schreiber,et al. Block Algorithms for Parallel Machines , 1988 .
[33] David H. Bailey,et al. Extra high speed matrix multiplication on the Cray-2 , 1988 .
[34] M. Chu. A note on the homotopy method for linear algebraic eigenvalue problems , 1988 .
[35] Al Geist. Parallel Tridiagonalization of a General Matrix Using Distributed-Memory Multiprocessors , 1989, PPSC.
[36] James Demmel,et al. On a Block Implementation of Hessenberg Multishift QR Iteration , 1989, Int. J. High Speed Comput..
[37] R. Schreiber,et al. On the convergence of the cyclic Jacobi method for parallel block orderings , 1989 .
[38] George A. Geist. Reduction of a general matrix to tridiagonal form using a hypercube multiprocessor , 1991 .
[39] M. Paardekooper. A quadratically convergent parallel Jacobi process for diagonally dominant matrices with distinct eigenvalues , 1989 .
[40] Jack J. Dongarra,et al. A set of level 3 basic linear algebra subprograms , 1990, TOMS.
[41] Jack Dongarra,et al. LAPACK Working Note 26: Prospectus for an Extension to LAPACK: A Portable Linear Algebra Library for High-Performance Computers , 1990 .
[42] Gautam M. Shroff. A parallel algorithm for the eigenvalues and eigenvectors of a general complex matrix , 1990 .
[43] M. Paardekooper,et al. A quadratically convergent parallel Jacobi process for diagonally dominant matrices with distinct eigenvalues , 1990 .
[44] L. Trefethen,et al. Average-case stability of Gaussian elimination , 1990 .
[45] Jack Dongarra,et al. Computing the eigenvalues and eigenvectors of a general matrix by reduction to general tridiagonal form , 1990 .
[46] Al Geist,et al. Finding eigenvalues and eigenvectors of unsymmetric matrices using a distributed-memory multiprocessor , 1990, Parallel Comput..
[47] K. A. Gallivan,et al. Parallel Algorithms for Dense Linear Algebra Computations , 1990, SIAM Rev..
[48] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[49] Nicholas J. Higham,et al. Exploiting fast matrix multiplication within the level 3 BLAS , 1990, TOMS.
[50] D. Sorensen,et al. Block reduction of matrices to condensed forms for eigenvalue computations , 1990 .
[51] Ilse C. F. Ipsen,et al. Solving the Symmetric Tridiagonal Eigenvalue Problem on the Hypercube , 1990, SIAM J. Sci. Comput..
[52] Edward Anderson. Robust Triangular Solves for Use in Condition Estimation , 1991 .
[53] J. Dongarra,et al. A Parallel Algorithm for the Non-Symmetric Eigenvalue Problem , 1991 .
[54] D. Sorensen,et al. On the orthogonality of eigenvectors computed by divide-and-conquer techniques , 1991 .
[55] David S. Watkins,et al. Convergence of algorithms of decomposition type for the eigenvalue problem , 1991 .
[56] Douglas M. Priest,et al. Algorithms for arbitrary precision floating point arithmetic , 1991, [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic.
[57] A. N. Malychev. Parallel aspects of some spectral problems in linear algebra , 1991 .
[58] Jessup. A divide and conquer approach to the nonsymmetric eigenvalue problem , 1991 .
[59] Ilse C. F. Ipsen,et al. Improving the Accuracy of Inverse Iteration , 1992, SIAM J. Sci. Comput..
[60] T. Y. Li,et al. Solving eigenvalue problems of real nonsymmetric matrices with real homotopies , 1992 .
[61] James Demmel,et al. Stability of block algorithms with fast level-3 BLAS , 1992, TOMS.
[62] James Demmel. The inherent inaccuracy of implicit tridiagonal QR , 1992 .
[63] Tien-Yien Li,et al. Homotopy-determinant algorithm for solving nonsymmetric eigenvalue problems , 1992 .
[64] Beresford N. Parlett,et al. Reduction to Tridiagonal Form and Minimal Realizations , 1992, SIAM J. Matrix Anal. Appl..
[65] James Demmel,et al. Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..
[66] James Demmel,et al. Block LU factorization , 1992 .
[67] A. Edelman. On the distribution of a scaled condition number , 1992 .
[68] J. Barlow. Error analysis of update methods for the symmetric eigenvalue problem , 1993 .
[69] James Demmel,et al. Parallel numerical linear algebra , 1993, Acta Numerica.
[70] Ivan Slapničar,et al. Accurate Symmetric Eigenreduction by a Jacobi Method , 1993 .
[71] James Demmel,et al. Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.
[72] P. Swarztrauber. A parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix , 1993 .
[73] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[74] David S. Watkins,et al. Shifting Strategies for the Parallel QR Algorithm , 1994, SIAM J. Sci. Comput..
[75] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .