A method for automatic estimation of instantaneous local uncertainty in particle image velocimetry measurements

The uncertainty of any measurement is the interval in which one believes the actual error lies. Particle image velocimetry (PIV) measurement error depends on the PIV algorithm used, a wide range of user inputs, flow characteristics, and the experimental setup. Since these factors vary in time and space, they lead to nonuniform error throughout the flow field. As such, a universal PIV uncertainty estimate is not adequate and can be misleading. This is of particular interest when PIV data are used for comparison with computational or experimental data. A method to estimate the uncertainty from sources detectable in the raw images and due to the PIV calculation of each individual velocity measurement is presented. The relationship between four error sources and their contribution to PIV error is first determined. The sources, or parameters, considered are particle image diameter, particle density, particle displacement, and velocity gradient, although this choice in parameters is arbitrary and may not be complete. This information provides a four-dimensional “uncertainty surface” specific to the PIV algorithm used. After PIV processing, our code “measures" the value of each of these parameters and estimates the velocity uncertainty due to the PIV algorithm for each vector in the flow field. The reliability of our methodology is validated using known flow fields so the actual error can be determined. Our analysis shows that, for most flows, the uncertainty distribution obtained using this method fits the confidence interval. An experiment is used to show that systematic uncertainties are accurately computed for a jet flow. The method is general and can be adapted to any PIV analysis, provided that the relevant error sources can be identified for a given experiment and the appropriate parameters can be quantified from the images obtained.

[1]  Adric Eckstein,et al.  Assessment of advanced windowing techniques for digital particle image velocimetry (DPIV) , 2009 .

[2]  M. G. Olsen,et al.  Directional dependence of depth of correlation due to in-plane fluid shear in microscopic particle image velocimetry , 2008 .

[3]  Richard D. Keane,et al.  Theory of cross-correlation analysis of PIV images , 1992 .

[4]  Eberhard Bodenschatz,et al.  Limitations of accuracy in PIV due to individual variations of particle image intensities , 2009 .

[5]  L. Lourenço Particle Image Velocimetry , 1989 .

[6]  P. Vlachos,et al.  Digital particle image velocimetry (DPIV) robust phase correlation , 2009 .

[7]  J. Westerweel,et al.  Single-pixel resolution ensemble correlation for micro-PIV applications , 2004 .

[8]  J. Westerweel,et al.  Universal outlier detection for PIV data , 2005 .

[9]  Jerry Westerweel,et al.  On velocity gradients in PIV interrogation , 2008 .

[10]  Carl D. Meinhart,et al.  Second-order accurate particle image velocimetry , 2001 .

[11]  Michel Stanislas,et al.  Main results of the third international PIV Challenge , 2008 .

[12]  Michel Stanislas,et al.  REVIEW ARTICLE: Main results of the First International PIV Challenge , 2003 .

[13]  Brandon M. Wilson,et al.  Unsteady computational fluid dynamics (CFD) validation and uncertainty quantification for a confined bank of cylinders using particle image velocimetry (PIV) , 2012 .

[14]  F. Scarano Iterative image deformation methods in PIV , 2002 .

[15]  Michel Stanislas,et al.  Main results of the Second International PIV Challenge , 2005 .

[16]  Adric Eckstein,et al.  Phase correlation processing for DPIV measurements , 2008 .

[17]  S. Wereley,et al.  A PIV Algorithm for Estimating Time-Averaged Velocity Fields , 2000 .

[18]  Steven T. Wereley,et al.  A correlation-based continuous window-shift technique to reduce the peak-locking effect in digital PIV image evaluation , 2002 .

[19]  Ben Timmins Automatic Particle Image Velocimetry Uncertainty Quantification , 2010 .

[20]  Hugh W. Coleman,et al.  Experimentation, Validation, and Uncertainty Analysis for Engineers , 2009 .

[21]  C. Willert,et al.  Digital particle image velocimetry , 1991 .

[22]  R. Adrian Twenty years of particle image velocimetry , 2005 .

[23]  J. Westerweel Fundamentals of digital particle image velocimetry , 1997 .

[24]  Nick G Glumac,et al.  A Practical Approach to PIV Uncertainty Analysis , 2010 .