Regular Sturm-Liouville Problem with Riemann-Liouville Derivatives of Order in (1, 2): Discrete Spectrum, Solutions and Applications

We study a regular fractional Sturm-Liouville problem formulated using left and right Riemann-Liouville derivatives of order in the range (1,2). We prove a theorem describing the eigenvalues and eigenfunctions of such a problem considered on the space of functions continuously differentiable in a finite interval and obeying vanishing Dirichlet and fractional Neumann boundary conditions. It appears that the spectrum of eigenvalues is discrete and that the eigenfunctions form a basis in the space of square-integrable functions. We also show applications of the derived eigenfunctions in the theory of partial fractional differential equations.

[1]  Qasem M. Al-Mdallal,et al.  On the numerical solution of fractional Sturm–Liouville problems , 2010, Int. J. Comput. Math..

[2]  Vedat Suat Erturk,et al.  Computing Eigenelements of Sturm–Liouville Problems of Fractional Order via Fractional Differential Transform Method , 2011 .

[3]  M. D’Ovidio From Sturm–Liouville problems to fractional and anomalous diffusions , 2010, 1011.1424.

[4]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[5]  Anton Zettl,et al.  Sturm-Liouville theory , 2005 .

[6]  Qasem M. Al-Mdallal,et al.  An efficient method for solving fractional Sturm–Liouville problems , 2009 .

[7]  Rahmat Darzi,et al.  Introducing an Iterative Method for Solving a Special FDE , 2009 .

[8]  Margarita Rivero,et al.  A fractional approach to the Sturm-Liouville problem , 2013 .

[9]  Agnieszka B. Malinowska,et al.  Variational Methods for the Fractional Sturm--Liouville Problem , 2013, 1304.6258.

[10]  Hans Sagan,et al.  Boundary and Eigenvalue Problems in Mathematical Physics. , 1961 .

[11]  O. P. Agrawal,et al.  On a Regular Fractional Sturm-Liouville Problem with derivatives of order in (0,1) , 2012, Proceedings of the 13th International Carpathian Control Conference (ICCC).

[12]  Jiangang Qi,et al.  Eigenvalue problems of the model from nonlocal continuum mechanics , 2011 .

[13]  O. Agrawal,et al.  Regular Fractional Sturm-Liouville Problem with Generalized Derivatives of Order in (0, 1) , 2013 .

[14]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[15]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[16]  Regular fractional Sturm-Liouville problem with discrete spectrum: Solutions and applications , 2014, ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014.

[17]  M. Sørensen,et al.  The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes , 2007 .

[18]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Mark M Meerschaert,et al.  FRACTIONAL PEARSON DIFFUSIONS. , 2013, Journal of mathematical analysis and applications.

[20]  Om Prakash Agrawal,et al.  Fractional Sturm-Liouville problem , 2013, Comput. Math. Appl..

[21]  George E. Karniadakis,et al.  Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation , 2013, J. Comput. Phys..

[22]  Agnieszka B. Malinowska,et al.  Introduction to the Fractional Calculus of Variations , 2012 .

[23]  I. Podlubny Fractional differential equations , 1998 .