Subcarrier multiplexing multiple-input multiple-output quantum key distribution scheme with orthogonal quantum states

Quantum key distribution (QKD) system is presently being developed for providing high-security transmission in future free-space optical communication links. However, current QKD technique restricts quantum secure communication to a low bit rate. To improve the QKD bit rate, we propose a subcarrier multiplexing multiple-input multiple-output quantum key distribution (SCM-MQKD) scheme with orthogonal quantum states. Specifically, we firstly present SCM-MQKD system model and drive symmetrical SCM-MQKD system into decoherence-free subspaces. We then utilize bipartite Werner and isotropic states to construct multiple parallel single photon with orthogonal quantum states that are invariant for unitary operations. Finally, we derive the density matrix and the capacity of SCM-MQKD system, respectively. Theoretical analysis and numerical results show that the capacity of SCM-MQKD system will increase $${\log _2}(N^2+1)$$log2(N2+1) times than that of single-photon QKD system.

[1]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[2]  Manas K. Patra,et al.  Decoherence-free quantum information in the presence of dynamical evolution , 2008, 0806.3861.

[3]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[4]  J. Mora,et al.  Analysis of Subcarrier Multiplexed Quantum Key Distribution Systems: Signal, Intermodulation, and Quantum Bit Error Rate , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Peng Huang,et al.  Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation , 2013, 1310.2405.

[6]  Seth Lloyd,et al.  Enhanced quantum communication via optical refocusing , 2011, 1101.2649.

[7]  Paolo Villoresi,et al.  Asymmetric architecture for heralded single-photon sources , 2012, 1210.6878.

[8]  Jian Zou,et al.  Feed-forward control for quantum state protection against decoherence , 2014, 1402.4921.

[9]  J. Capmany,et al.  Analysis of Passive Optical Networks for Subcarrier Multiplexed Quantum Key Distribution , 2010, IEEE Transactions on Microwave Theory and Techniques.

[10]  Marco Fiorentino,et al.  Deterministic controlled-NOT gate for single-photon two-qubit quantum logic. , 2004, Physical review letters.

[11]  Saikat Guha,et al.  The Squashed Entanglement of a Quantum Channel , 2013, IEEE Transactions on Information Theory.

[12]  Runyao Duan,et al.  Distinguishability of Quantum States by Positive Operator-Valued Measures With Positive Partial Transpose , 2012, IEEE Transactions on Information Theory.

[13]  Zheng-Fu Han,et al.  Decoy states for quantum key distribution based on decoherence-free subspaces , 2008 .

[14]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[15]  J Capmany,et al.  Dispersion Supported BB84 Quantum Key Distribution Using Phase Modulated Light , 2011, IEEE Photonics Journal.

[16]  Jeffrey H. Shapiro,et al.  Photon Information Efficient Communication Through Atmospheric Turbulence—Part II: Bounds on Ergodic Classical and Private Capacities , 2014, Journal of Lightwave Technology.

[17]  Andrzej Kossakowski,et al.  Multipartite invariant states. I. Unitary symmetry , 2006 .

[18]  Nicolas Brunner,et al.  Certifying the dimension of classical and quantum systems in a prepare-and-measure scenario with independent devices. , 2013, Physical review letters.

[19]  Debbie W. Leung,et al.  Quantum Key Distribution Based on Private States: Unconditional Security Over Untrusted Channels With Zero Quantum Capacity , 2006, IEEE Transactions on Information Theory.

[20]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[21]  Guang-Can Guo,et al.  Optimal quantum codes for preventing collective amplitude damping , 1998 .

[22]  Qi Guo,et al.  Parity-gate-based quantum information processing in decoherence-free subspace with nitrogen-vacancy centers , 2015 .

[23]  J. Capmany,et al.  Impact of Third-Order Intermodulation on the Performance of Subcarrier Multiplexed Quantum Key Distribution , 2011, Journal of Lightwave Technology.

[24]  Shanghong Zhao,et al.  Forward spectral filtering parallel quantum key distribution system , 2013 .

[25]  Joseph M. Renes,et al.  Polar Codes for Private and Quantum Communication Over Arbitrary Channels , 2012, IEEE Transactions on Information Theory.

[26]  Adetunmise C. Dada Multiplexing scheme for simplified entanglement-based large-alphabet quantum key distribution , 2015 .

[27]  A. Shaham,et al.  Realizing controllable depolarization in photonic quantum-information channels , 2010, 1006.5795.

[28]  Jean-Marc Merolla,et al.  Single-Photon Interference in Sidebands of Phase-Modulated Light for Quantum Cryptography , 1999 .

[29]  Andrzej Kossakowski,et al.  Multipartite invariant states. II. Orthogonal symmetry , 2006 .

[30]  Shan Ouyang,et al.  Capacity of multiple-input multiple-output quantum depolarizing channels , 2012 .

[31]  Harith Ahmad,et al.  Dual-Wavelength Fiber Lasers for the Optical Generation of Microwave and Terahertz Radiation , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  Safia Abbas,et al.  Quantum Key Distribution: Simulation and Characterizations , 2015 .

[33]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[34]  Ivan B. Djordjevic,et al.  Multidimensional QKD Based on Combined Orbital and Spin Angular Momenta of Photon , 2013, IEEE Photonics Journal.

[35]  J.H. Shapiro,et al.  Attacking quantum key distribution with single-photon two-qubit quantum logic , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[36]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[37]  A. Martinez,et al.  Microwave Photonics Parallel Quantum Key Distribution , 2012, IEEE Photonics Journal.

[38]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[39]  N. Brunner,et al.  Pre- and postselected quantum states: Density matrices, tomography, and Kraus operators , 2013, 1308.2089.

[40]  Jun Yu Li,et al.  Quantum key distribution scheme with orthogonal product states , 2001, quant-ph/0102060.

[41]  Goldenberg,et al.  Quantum cryptography based on orthogonal states. , 1995, Physical review letters.

[42]  Heng Fan,et al.  Optimal two-qubit quantum circuits using exchange interactions , 2004, quant-ph/0410001.

[43]  S. Arnon,et al.  Quantum key distribution by a free-space MIMO system , 2006, Journal of Lightwave Technology.

[44]  Wei Chen,et al.  Quantum key distribution based on quantum dimension and independent devices , 2014, 1402.2053.

[45]  E. Solano,et al.  Microwave photonics with Josephson junction arrays: Negative refraction index and entanglement through disorder , 2011, 1110.1184.

[46]  Fei Gao,et al.  Local distinguishability of orthogonal quantum states in a 2⊗2⊗2 system , 2013 .

[47]  Hermann Kampermann,et al.  Finite-range multiplexing enhances quantum key distribution via quantum repeaters , 2014 .

[48]  Masato Koashi,et al.  Quantum Cryptography Based on Split Transmission of One-Bit Information in Two Steps , 1997 .

[49]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[50]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[51]  Lorenza Viola,et al.  Quantum Markovian Subsystems: Invariance, Attractivity, and Control , 2007, IEEE Transactions on Automatic Control.

[52]  C. Macchiavello,et al.  Classical and quantum capacities of a fully correlated amplitude damping channel , 2013, 1309.2219.

[53]  Luke F. Lester,et al.  Simultaneous Microwave- and Millimeter-Wave Signal Generation With a 1310-nm Quantum-Dot-Distributed Feedback Laser , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[54]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[55]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[56]  N. Muga,et al.  QBER Estimation in QKD Systems With Polarization Encoding , 2011, Journal of Lightwave Technology.