Optimizing Parameters of Fuzzy c-Means Clustering Algorithm

For overcoming the shortcoming that Fuzzy c-Means (FCM) clustering algorithm seriously depends on the initial values of clustering numbers (c) and fuzzy exponent (m), we introduce genetic algorithm to find the pair parameters of FCM simultaneity. In the proposed algorithm, the clustering numbers and the fuzzy exponent are controlled by a binary code. In order to optimize the two parameters, new methods to code, decode, crossover and establish fitness function have been proposed. Results demonstrating the superiority of the proposed method, as compared to other method that only use validity index to find the clustering numbers (c), are provided for several real-life and artificial data sets.

[1]  Daewon Lee,et al.  An improved cluster labeling method for support vector clustering , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Bing Liu,et al.  An efficient semi-unsupervised gene selection method via spectral biclustering , 2006, IEEE Transactions on NanoBioscience.

[3]  Gao Xinbo,et al.  Parameter optimization in FCM clustering algorithms , 2000, WCC 2000 - ICSP 2000. 2000 5th International Conference on Signal Processing Proceedings. 16th World Computer Congress 2000.

[4]  V.S. Tseng,et al.  Efficiently mining gene expression data via a novel parameterless clustering method , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[5]  Daewon Lee,et al.  Dynamic Characterization of Cluster Structures for Robust and Inductive Support Vector Clustering , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Lipo Wang,et al.  Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[7]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[8]  Haiyoung Lee A Cluster validity Index for Fuzzy Clustering , 1999 .

[9]  Rajesh N. Davé,et al.  Validating fuzzy partitions obtained through c-shells clustering , 1996, Pattern Recognit. Lett..

[10]  Ujjwal Maulik,et al.  Performance Evaluation of Some Clustering Algorithms and Validity Indices , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Miin-Shen Yang,et al.  A cluster validity index for fuzzy clustering , 2005, Pattern Recognit. Lett..

[12]  Minho Kim,et al.  New indices for cluster validity assessment , 2005, Pattern Recognit. Lett..

[13]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[14]  Alioune Ngom,et al.  A simulated annealing approach to find the optimal parameters for fuzzy clustering microarray data , 2005, XXV International Conference of the Chilean Computer Science Society (SCCC'05).

[15]  Jian Yu,et al.  Analysis of the weighting exponent in the FCM , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[16]  Ujjwal Maulik,et al.  A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification , 2005, Fuzzy Sets Syst..

[17]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Use of genetic algorithms for ISAR image autofocusing , 2004, Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509).

[19]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .