Rectifying Effect of the Sr3Al2O6/Ga2O3 Heterojunction

[1]  Masashi Kawasaki,et al.  The 2016 oxide electronic materials and oxide interfaces roadmap , 2016 .

[2]  Marius Grundmann,et al.  One decade of fully transparent oxide thin‐film transistors: fabrication, performance and stability , 2013 .

[3]  R. T. Tung Recent advances in Schottky barrier concepts , 2001 .

[4]  Wenjun Zheng,et al.  High quality β -Ga 2 O 3 film grown with N 2 O for high sensitivity solar-blind-ultraviolet photodetector with fast response speed , 2018 .

[5]  David-Wei Zhang,et al.  Investigation of the optical and electrical properties of ZnO/Cu/ZnO multilayers grown by atomic layer deposition , 2018 .

[6]  Weihua Tang,et al.  Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors , 2014 .

[7]  Akihiko Furukawa,et al.  Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage , 2017 .

[8]  Dongxu Zhao,et al.  Solar-Blind Avalanche Photodetector Based On Single ZnO-Ga₂O₃ Core-Shell Microwire. , 2015, Nano letters.

[9]  A. Polity,et al.  Structural properties and bandgap bowing of ZnO1−xSx thin films deposited by reactive sputtering , 2004 .

[10]  D. Dao,et al.  Photoresponse of a Highly-Rectifying 3C-SiC/Si Heterostructure Under UV and Visible Illuminations , 2018, IEEE Electron Device Letters.

[11]  J. Mannhart,et al.  Oxide Interfaces—An Opportunity for Electronics , 2010, Science.

[12]  A. Klein Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Kris Myny,et al.  The development of flexible integrated circuits based on thin-film transistors , 2018, Nature Electronics.

[14]  Bin Zhao,et al.  An Ultrahigh Responsivity (9.7 mA W−1) Self‐Powered Solar‐Blind Photodetector Based on Individual ZnO–Ga2O3 Heterostructures , 2017 .

[15]  Jian V. Li,et al.  Atomic Layer Deposited Gallium Oxide Buffer Layer Enables 1.2 V Open‐Circuit Voltage in Cuprous Oxide Solar Cells , 2014, Advanced materials.

[16]  Weihua Tang,et al.  Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction. , 2017, ACS applied materials & interfaces.

[17]  Jiangtao Li,et al.  Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window , 2018, Nanotechnology.

[18]  Saurabh Lodha,et al.  Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors , 2018, Applied Physics Letters.

[19]  Weihua Tang,et al.  Preliminary study for the effects of temperatures on optoelectrical properties of β-Ga2O3 thin films , 2019, Vacuum.

[20]  Lin-Bao Luo,et al.  Graphene‐β‐Ga2O3 Heterojunction for Highly Sensitive Deep UV Photodetector Application , 2016, Advanced materials.

[21]  Weihua Tang,et al.  A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction , 2017 .

[22]  G. L. Pearson,et al.  Modulation of Conductance of Thin Films of Semi-Conductors by Surface Charges , 1948 .

[23]  Xinge Yu,et al.  Metal oxides for optoelectronic applications. , 2016, Nature materials.

[24]  E. A. Kraut,et al.  Measurement of semiconductor heterojunction band discontinuities by x‐ray photoemission spectroscopy , 1985 .

[25]  Marius Grundmann,et al.  Transparent semiconducting oxides: materials and devices , 2010 .

[26]  Weihua Tang,et al.  Self-Powered Ultraviolet Photodetector with Superhigh Photoresponsivity (3.05 A/W) Based on the GaN/Sn:Ga2O3 pn Junction. , 2018, ACS nano.

[27]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[28]  L. Kourkoutis,et al.  Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. , 2016, Nature materials.

[29]  Z. Talebpour,et al.  Synthesis and characterization of Sr3Al2O6 nanocomposite as catalyst for biodiesel production. , 2014, Bioresource technology.

[30]  Caofeng Pan,et al.  Piezo‐Phototronic Effect Modulated Deep UV Photodetector Based on ZnO‐Ga2O3 Heterojuction Microwire , 2018 .

[31]  Shaomin Liu,et al.  A Comparative Study of the Performance of SrCo0.76Fe0.19Al0.1Ox and (SrCo0.8Fe0.2O3−δ)0.95(SrAl2O4)0.05 Mixed‐Conducting Membranes , 2013 .

[32]  Yu Huang,et al.  Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions , 2018, Nature.

[33]  F. Liang,et al.  Recent Progress in Solar‐Blind Deep‐Ultraviolet Photodetectors Based on Inorganic Ultrawide Bandgap Semiconductors , 2019, Advanced Functional Materials.

[34]  J. Meiss,et al.  Oxide Sandwiched Metal Thin‐Film Electrodes for Long‐Term Stable Organic Solar Cells , 2012 .

[35]  Chris G. Van de Walle,et al.  Universal alignment of hydrogen levels in semiconductors, insulators and solutions , 2003, Nature.

[36]  Zeng Liu,et al.  Energy-band alignments at ZnO/Ga2O3 and Ta2O5/Ga2O3 heterointerfaces by X-ray photoelectron spectroscopy and electron affinity rule , 2019, Journal of Applied Physics.

[37]  M. Grundmann,et al.  Electrical Properties of Vertical p‐NiO/n‐Ga2O3 and p‐ZnCo2O4/n‐Ga2O3 pn‐Heterodiodes , 2019, physica status solidi (a).

[38]  F. Ren,et al.  Review of gallium-oxide-based solar-blind ultraviolet photodetectors , 2019, Photonics Research.

[39]  Y. Teng,et al.  Self‐Assembled Metastable γ‐Ga2O3 Nanoflowers with Hexagonal Nanopetals for Solar‐Blind Photodetection , 2014, Advanced materials.

[40]  Weihua Tang,et al.  Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector , 2017 .

[41]  Stephen J. Pearton,et al.  Effect of surface treatments on electrical properties of β-Ga2O3 , 2018, Journal of Vacuum Science & Technology B.

[42]  Ichiro Yamada,et al.  Efficient Assembly of Bridged β‐Ga2O3 Nanowires for Solar‐Blind Photodetection , 2010 .

[43]  Ka Ho Chan,et al.  Rectify Effect of Pedot:PSS/WS2 Heterostructure , 2018, physica status solidi (a).

[44]  Shunfang Li,et al.  Self-powered NiO@ZnO-nanowire-heterojunction ultraviolet micro-photodetectors , 2019, Optical Materials Express.

[45]  Weihua Tang,et al.  Review of gallium oxide based field-effect transistors and Schottky barrier diodes , 2019, Chinese Physics B.

[46]  Jung‐Hun Seo,et al.  Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond , 2017 .

[47]  Weihua Tang,et al.  Synthesis of free-standing Ga 2 O 3 films for flexible devices by water etching of Sr 3 Al 2 O 6 sac , 2019, Chinese Physics B.

[48]  Zhenping Wu,et al.  Band alignments of β-Ga2O3 with MgO, Al2O3 and MgAl2O4 measured by x-ray photoelectron spectroscopy , 2019, Journal of Physics D: Applied Physics.

[49]  Andreas Klein,et al.  Energy band alignment at interfaces of semiconducting oxides: A review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion rule , 2012 .

[50]  Meiyong Liao,et al.  A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures , 2013, Sensors.

[51]  Stephen J. Pearton,et al.  A review of Ga2O3 materials, processing, and devices , 2018 .

[52]  D. P. Fagg,et al.  Electrical properties and thermal expansion of strontium aluminates , 2014 .

[53]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[54]  Yu Zhang,et al.  Towards Adaptively Tuned Silicon Microring Resonators for Optical Networks-on-Chip Applications , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[55]  E. A. Kraut,et al.  Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials , 1980 .

[56]  Z. P. Wu,et al.  Direct charge carrier injection into Ga2O3 thin films using an In2O3 cathode buffer layer: their optical, electrical and surface state properties , 2017 .

[57]  C. Körber,et al.  Intrinsic energy band alignment of functional oxides , 2014 .

[58]  Ahmed A. Al-Ghamdi,et al.  New concept ultraviolet photodetectors , 2015 .

[59]  Weihua Tang,et al.  Abnormal bipolar resistive switching behavior in a Pt/GaO1.3/Pt structure , 2015 .

[60]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012, Advanced materials.

[61]  V. A. Tikhomirov,et al.  Anionic and cationic substitution in ZnO , 2009 .

[62]  R. Fornari,et al.  Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3 , 2012 .

[63]  Marius Grundmann,et al.  Oxide bipolar electronics: materials, devices and circuits , 2016 .

[64]  Roberto Fornari,et al.  ε-Ga 2 O 3 epilayers as a material for solar-blind UV photodetectors , 2018 .

[65]  K. Baedeker Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen , 1907 .

[66]  Young Jin Kim,et al.  The deposition and the photoluminescence of SrAl2O4:Eu2+ thin films , 2010 .

[67]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .