PROSPECTS FOR CHARACTERIZING THE ATMOSPHERE OF PROXIMA CENTAURI b

The newly detected Earth-mass planet in the habitable zone of Proxima Centauri could potentially host life - if it has an atmosphere that supports surface liquid water. We show that thermal phase curve observations with the James Webb Space Telescope (JWST) from 5-12 microns can be used to test the existence of such an atmosphere. We predict the thermal variation for a bare rock versus a planet with 35% heat redistribution to the nightside and show that a JWST phase curve measurement can distinguish between these cases at $4\sigma$ confidence, assuming photon-limited precision. We also consider the case of an Earth-like atmosphere, and find that the ozone 9.8 micron band could be detected with longer integration times (a few months). We conclude that JWST observations have the potential to put the first constraints on the possibility of life around the nearest star to the Solar System.

[1]  S. Seager,et al.  ON THE METHOD TO INFER AN ATMOSPHERE ON A TIDALLY LOCKED SUPER EARTH EXOPLANET AND UPPER LIMITS TO GJ 876d , 2009, 0910.1505.

[2]  X. Delfosse,et al.  Atmospheric characterization of Proxima b by coupling the Sphere high-contrast imager to the Espresso spectrograph , 2016, 1609.03082.

[3]  Remko Stuik,et al.  Combining high-dispersion spectroscopy with high contrast imaging : Probing rocky planets around our nearest neighbors , 2015, 1503.01136.

[4]  Pierre Riaud,et al.  Improving Earth-like planets' detection with an ELT: the differential radial velocity experiment , 2007 .

[5]  L. Kaltenegger,et al.  EFFECT OF UV RADIATION ON THE SPECTRAL FINGERPRINTS OF EARTH-LIKE PLANETS ORBITING M STARS , 2015, 1506.07202.

[6]  T. Schneider,et al.  Atmospheric Dynamics of Earth‐Like Tidally Locked Aquaplanets , 2010, 1001.5117.

[7]  J. Leconte,et al.  The effect of rotation and tidal heating on the thermal lightcurves of super Mercuries , 2013, 1305.3858.

[8]  Jaymie M. Matthews,et al.  MOST OBSERVATIONS OF OUR NEAREST NEIGHBOR: FLARES ON PROXIMA CENTAURI , 2016, 1608.06672.

[9]  A. Belu,et al.  Thermal phase curves of nontransiting terrestrial exoplanets - II. Characterizing airless planets , 2011, 1110.3087.

[10]  A. Segura,et al.  Atmospheric mass loss by stellar wind from planets around main sequence M stars , 2010, 1006.0021.

[11]  Jason J. Wang,et al.  Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager , 2015, Science.

[12]  J. Beuzit,et al.  Mass-radius relation of low and very low-mass stars revisited with the VLTI , 2009, 0906.0602.

[13]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[14]  D. Abbot,et al.  TEMPERATURE STRUCTURE AND ATMOSPHERIC CIRCULATION OF DRY TIDALLY LOCKED ROCKY EXOPLANETS , 2016, The Astrophysical journal.

[15]  A. Szentgyorgyi,et al.  THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS , 2014, 1412.8687.

[16]  K. Heng,et al.  ATMOSPHERIC CHEMISTRY FOR ASTROPHYSICISTS: A SELF-CONSISTENT FORMALISM AND ANALYTICAL SOLUTIONS FOR ARBITRARY C/O , 2015, 1506.05501.

[17]  Robert M. Haberle,et al.  Simulations of the Atmospheres of Synchronously Rotating Terrestrial Planets Orbiting M Dwarfs: Conditions for Atmospheric Collapse and the Implications for Habitability☆ , 1997 .

[18]  C. Karr Infrared and Raman spectroscopy of lunar and terrestrial minerals , 1975 .

[19]  D. Charbonneau,et al.  THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS , 2013, 1302.1647.

[20]  Drake Deming,et al.  REPEATABILITY AND ACCURACY OF EXOPLANET ECLIPSE DEPTHS MEASURED WITH POST-CRYOGENIC SPITZER , 2016, 1601.05101.

[21]  C. F. Lillie,et al.  Characterizing Transiting Planet Atmospheres through 2025 , 2015, 1502.00004.

[22]  R. Rand,et al.  Synchronous Locking of Tidally Evolving Satellites , 1996 .

[23]  Henry W. Lin,et al.  DETECTING INDUSTRIAL POLLUTION IN THE ATMOSPHERES OF EARTH-LIKE EXOPLANETS , 2014, 1406.3025.

[24]  Franck Selsis,et al.  Thermal phase curves of nontransiting terrestrial exoplanets - I. Characterizing atmospheres , 2011, 1104.4763.

[25]  Kevin Heng,et al.  Atmospheric circulation of tidally locked exoplanets: a suite of benchmark tests for dynamical solvers , 2010, 1010.1257.

[26]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[27]  F. Allard,et al.  THE PHYSICAL MECHANISM BEHIND M DWARF METALLICITY INDICATORS AND THE ROLE OF C AND O ABUNDANCES , 2016, 1605.04904.

[28]  Franck Selsis,et al.  3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability and habitability , 2013, 1303.7079.

[29]  G. Marcy,et al.  A PLATEAU IN THE PLANET POPULATION BELOW TWICE THE SIZE OF EARTH , 2013, 1304.0460.

[30]  Kevin France,et al.  THE MUSCLES TREASURY SURVEY. I. MOTIVATION AND OVERVIEW , 2016, 1602.09142.

[31]  D. Charbonneau,et al.  THE OCCURRENCE OF POTENTIALLY HABITABLE PLANETS ORBITING M DWARFS ESTIMATED FROM THE FULL KEPLER DATASET AND AN EMPIRICAL MEASUREMENT OF THE DETECTION SENSITIVITY , 2015, 1501.01623.

[32]  R. Pierrehumbert A PALETTE OF CLIMATES FOR GLIESE 581g , 2010 .

[33]  Dorian S. Abbot,et al.  STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE , 2014, 1404.4992.

[34]  J. Davenport,et al.  No Conclusive Evidence for Transits of Proxima b in MOST Photometry , 2016, 1609.08718.

[35]  D. Kipping,et al.  PROBABILISTIC FORECASTING OF THE MASSES AND RADII OF OTHER WORLDS , 2016, 1603.08614.

[36]  Nikole K. Lewis,et al.  The need for laboratory work to aid in the understanding of exoplanetary atmospheres , 2016, 1602.06305.

[37]  Dorian S. Abbot,et al.  Deciphering thermal phase curves of dry, tidally locked terrestrial planets , 2014 .

[38]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[39]  K. Heng,et al.  Atmospheric circulation of tidally locked exoplanets: II. Dual-band radiative transfer and convective adjustment , 2011, 1105.4065.

[40]  R. Nelson,et al.  Exploring plausible formation scenarios for the planet candidate orbiting Proxima Centauri , 2016, 1608.06908.

[41]  Victoria Meadows,et al.  Biosignatures from Earth-like planets around M dwarfs. , 2005, Astrobiology.

[42]  Ignasi Ribas,et al.  The habitability of Proxima Centauri b II. Possible climates and Observability , 2016, 1608.06827.

[43]  Simon Albrecht,et al.  The signature of orbital motion from the dayside of the planet τ Boötis b , 2012, Nature.

[44]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[45]  J. Barnes,et al.  Longevity of moons around habitable planets , 2014, International Journal of Astrobiology.

[46]  H. Matsuhara,et al.  ALBEDO PROPERTIES OF MAIN BELT ASTEROIDS BASED ON THE ALL-SKY SURVEY OF THE INFRARED ASTRONOMICAL SATELLITE AKARI , 2012, 1211.2889.

[47]  E. Guinan,et al.  The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present , 2016, 1608.06813.

[48]  David P. Fleming,et al.  The Pale Green Dot: A Method to Characterize Proxima Centauri b Using Exo-Aurorae , 2016, 1609.09075.

[49]  Dorian S. Abbot,et al.  STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS , 2013, 1307.0515.

[50]  Darren M. Williams,et al.  Seasonality on terrestrial extrasolar planets: inferring obliquity and surface conditions from infrared light curves , 2004 .

[51]  Gautam Vasisht,et al.  Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST) , 2014, 1411.1754.

[52]  Edinburgh,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope: IV. The Low Resolution Spectrometer , 2015 .