Shocking results without shocks: Subsonic turbulence in smoothed particle hydrodynamics and moving-mesh simulations

Highly supersonic, compressible turbulence is thought to be of tantamount importance for star formation processes in the interstellar medium. Likewise, cosmic structure formation is expected to give rise to subsonic turbulence in the intergalactic medium, which may substantially modify the thermodynamic structure of gas in virialized dark matter halos and affect small-scale mixing processes in the gas. Numerical simulations have played a key role in characterizing the properties of astrophysical turbulence, but thus far systematic code comparisons have been restricted to the supersonic regime, leaving it unclear whether subsonic turbulence is faithfully represented by the numerical techniques commonly employed in astrophysics. Here we focus on comparing the accuracy of smoothed particle hydrodynamics (SPH) and our new moving-mesh technique AREPO in simulations of driven subsonic turbulence. To make contact with previous results, we also analyze simulations of transsonic and highly supersonic turbulence. We find that the widely employed standard formulation of SPH yields problematic results in the subsonic regime. Instead of building up a Kolmogorov-like turbulent cascade, large-scale eddies are quickly damped close to the driving scale and decay into small-scale velocity noise. Reduced viscosity settings improve the situation, but the shape of the dissipation range differs compared with expectations for a Kolmogorov cascade. In contrast, our moving-mesh technique does yield power-law scaling laws for the power spectra of velocity, vorticity and density, consistent with expectations for fully developed isotropic turbulence. We show that large errors in SPH's gradient estimate and the associated subsonic velocity noise are ultimately responsible for producing inaccurate results in the subsonic regime. In contrast, SPH's performance is much better for supersonic turbulence. [Abridged]

[1]  Francis Leboeuf,et al.  SPH truncation error in estimating a 3D derivative , 2011 .

[2]  Daniel J. Price Modelling discontinuities and Kelvin-Helmholtz instabilities in SPH , 2007, J. Comput. Phys..

[3]  W. Schmidt,et al.  Turbulence production and turbulent pressure support in the intergalactic medium , 2011, 1102.3352.

[4]  U. Cambridge,et al.  On the origin of cores in simulated galaxy clusters , 2008, 0812.1750.

[5]  F. Vazza,et al.  Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity , 2005 .

[6]  K. Dolag,et al.  Turbulent velocity fields in smoothed particle hydrodymanics simulated galaxy clusters: scaling laws for the turbulent energy , 2006 .

[7]  J. Niemeyer,et al.  Hydrodynamical adaptive mesh refinement simulations of turbulent flows -II. Cosmological simulations of galaxy clusters , 2008, 0801.4729.

[8]  C. Meneveau,et al.  A functional form for the energy spectrum parametrizing bottleneck and intermittency effects , 2008 .

[9]  J. Monaghan,et al.  A Switch to Reduce SPH Viscosity , 1997 .

[10]  M. Lastiwka,et al.  Truncation error in mesh‐free particle methods , 2006 .

[11]  Volker Springel,et al.  SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS , 2011, 1101.5491.

[12]  L. Fang,et al.  VORTICITY OF INTERGALACTIC MEDIUM VELOCITY FIELD ON LARGE SCALES , 2010, 1001.4127.

[13]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[14]  Two Regimes of Turbulent Fragmentation and the Stellar Initial Mass Function from Primordial to Present-Day Star Formation , 2007, astro-ph/0701795.

[15]  Andreas Burkert,et al.  Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds , 1998 .

[16]  D. Ryu,et al.  Turbulence and Magnetic Fields in the Large-Scale Structure of the Universe , 2008, Science.

[17]  D. Balsara von Neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms , 1995 .

[18]  O. Agertz,et al.  Resolving mixing in smoothed particle hydrodynamics , 2009, 0906.0774.

[19]  Daniel J. Price,et al.  Algorithmic comparisons of decaying, isothermal, supersonic turbulence , 2008, 0810.4599.

[20]  The Mass Spectra of Cores in Turbulent Molecular Clouds and Implications for the Initial Mass Function , 2005, astro-ph/0509591.

[21]  J. Monaghan,et al.  Fundamental differences between SPH and grid methods , 2006, astro-ph/0610051.

[22]  Damien Violeau,et al.  Numerical modelling of complex turbulent free‐surface flows with the SPH method: an overview , 2007 .

[23]  Evghenii Gaburov,et al.  Astrophysical Weighted Particle Magnetohydrodynamics , 2010, 1006.4159.

[24]  R. Klessen,et al.  Comparing the statistics of interstellar turbulence in simulations and observations - Solenoidal versus compressive turbulence forcing , 2009, 0905.1060.

[25]  Numerical dissipation and the bottleneck effect in simulations of compressible isotropic turbulence , 2004, astro-ph/0407616.

[26]  V. Springel,et al.  Physical viscosity in smoothed particle hydrodynamics simulations of galaxy clusters , 2006, astro-ph/0605301.

[27]  J. Monaghan,et al.  A turbulence model for Smoothed Particle Hydrodynamics , 2009, 0911.2523.

[28]  David Collins,et al.  COMPARING NUMERICAL METHODS FOR ISOTHERMAL MAGNETIZED SUPERSONIC TURBULENCE , 2011, 1103.5525.

[29]  Daisuke Nagai,et al.  RESIDUAL GAS MOTIONS IN THE INTRACLUSTER MEDIUM AND BIAS IN HYDROSTATIC MEASUREMENTS OF MASS PROFILES OF CLUSTERS , 2009, 0903.4895.

[30]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[31]  J. ZuHone,et al.  A PARAMETER SPACE EXPLORATION OF GALAXY CLUSTER MERGERS. I. GAS MIXING AND THE GENERATION OF CLUSTER ENTROPY , 2010, 1004.3820.

[32]  R. Klessen,et al.  The Density Probability Distribution in Compressible Isothermal Turbulence: Solenoidal versus Compressive Forcing , 2008, 0808.0605.

[33]  Hui Li,et al.  Thermoresistive instability in magnetar crusts , 2011, 1105.5712.

[34]  K. Mannheim,et al.  EVOLUTION OF SHOCKS AND TURBULENCE IN MAJOR CLUSTER MERGERS , 2010, 1001.1170.

[35]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[36]  Tom Abel,et al.  rpSPH: a novel smoothed particle hydrodynamics algorithm , 2010, 1003.0937.

[37]  R. Klessen,et al.  Gravitational Collapse in Turbulent Molecular Clouds. I. Gasdynamical Turbulence , 1999, astro-ph/9911068.

[38]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[39]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[40]  K. Subramanian,et al.  Evolving turbulence and magnetic fields in galaxy clusters , 2005, astro-ph/0505144.

[41]  Andreas Bauer,et al.  Magnetohydrodynamics on an unstructured moving grid , 2011, 1108.1792.

[42]  Volker Springel,et al.  Particle hydrodynamics with tessellation techniques , 2009, 0912.0629.

[43]  Stephan Rosswog,et al.  Astrophysical smooth particle hydrodynamics , 2009, 0903.5075.

[44]  M. Norman,et al.  Turbulent Motions and Shocks Waves in Galaxy Clusters simulated with AMR , 2009, 0905.3169.

[45]  Frederic A. Rasio Particle Methods in Astrophysical Fluid Dynamics , 2000 .

[46]  Fang Li-zhi,et al.  Dynamical Effect of the Turbulence of IGM on the Baryon Fraction Distribution , 2011, 1103.1058.

[47]  Joseph John Monaghan,et al.  SPH and Riemann Solvers , 1997 .

[48]  Walter Dehnen,et al.  Inviscid smoothed particle hydrodynamics , 2010 .

[49]  Wolfram Schmidt,et al.  THE FRACTAL DENSITY STRUCTURE IN SUPERSONIC ISOTHERMAL TURBULENCE: SOLENOIDAL VERSUS COMPRESSIVE ENERGY INJECTION , 2007, 0710.1359.

[50]  Marcus Brüggen,et al.  Massive and refined - II. The statistical properties of turbulent motions in massive galaxy clusters with high spatial resolution , 2011 .

[51]  V. Springel,et al.  A novel approach for accurate radiative transfer in cosmological hydrodynamic simulations , 2010, 1012.1017.

[52]  W. Schmidt,et al.  ADAPTIVELY REFINED LARGE EDDY SIMULATIONS OF A GALAXY CLUSTER: TURBULENCE MODELING AND THE PHYSICS OF THE INTRACLUSTER MEDIUM , 2009 .

[53]  Daniel J. Price,et al.  A comparison between grid and particle methods on the statistics of driven, supersonic, isothermal turbulence , 2010, 1004.1446.

[54]  Volker Springel,et al.  Cosmological SPH simulations: The entropy equation , 2001 .

[55]  James Wadsley,et al.  On the treatment of entropy mixing in numerical cosmology , 2008 .

[56]  V. Springel Smoothed Particle Hydrodynamics in Astrophysics , 2010, 1109.2219.

[57]  K. Getman,et al.  The soft X-ray light curves of partially eclipsed stellar flares , 2011, 1108.3999.

[58]  W. Schmidt,et al.  A fluid-dynamical subgrid scale model for highly compressible astrophysical turbulence , 2010, 1010.4492.

[59]  L. Fang,et al.  Dynamical effect of the turbulence of the intergalactic medium on the baryon fraction distribution , 2011 .

[60]  R. Valdarnini,et al.  The impact of numerical viscosity in SPH simulations of galaxy clusters , 2010, 1010.3378.

[61]  A. Finoguenov,et al.  Probing turbulence in the Coma galaxy cluster , 2004 .