Increased open-circuit voltage in bulk-heterojunction solar cells using a C60 derivative

The fullerene derivative C60-fused N-methyl-2-(3-hexylthiophen-2-yl)pyrrolidine (C60-TH-Hx) is used as the acceptor material in bulk-heterojunction (BHJ) solar cells fabricated with the low band-gap polymer poly[(4,4′-bis(2-ethylhexyl)dithiene[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5′-diyl]. Direct comparison with BHJ solar cells based on [6,6]-phenyl-C61-butyric methyl ester and Si-PCPDTBT indicates that the C60-TH-Hx acceptor yields a larger open-circuit voltage because of higher lowest unoccupied molecular orbital energy level of C60-TH-Hx.

[1]  Jung Hei Choi,et al.  Thienyl-substituted methanofullerene derivatives for organic photovoltaic cells , 2010 .

[2]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[3]  Gang Li,et al.  Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. , 2009, Journal of the American Chemical Society.

[4]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[5]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[6]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[7]  Gang Li,et al.  Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells , 2008 .

[8]  Andrés J. García,et al.  Improved injection in n-type organic transistors with conjugated polyelectrolytes. , 2009, Journal of the American Chemical Society.

[9]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[10]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[11]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[12]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[13]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[14]  C. Brabec,et al.  Recombination‐Limited Photocurrents in Low Bandgap Polymer/Fullerene Solar Cells , 2009 .

[15]  Yongfang Li,et al.  Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells. , 2010, Journal of the American Chemical Society.

[16]  C. Brabec,et al.  Nanomorphology and Charge Generation in Bulk Heterojunctions Based on Low‐Bandgap Dithiophene Polymers with Different Bridging Atoms , 2010 .

[17]  Daoben Zhu,et al.  Photovoltaic Devices with Methanofullerenes as Electron Acceptors , 2002 .

[18]  Jae Kwan Lee,et al.  Bulk heterojunction bipolar field-effect transistors processed with alkane dithiol , 2008 .

[19]  Xianyu Deng,et al.  Methanofullerenes Used as Electron Acceptors in Polymer Photovoltaic Devices , 2004 .

[20]  Tae-Dong Kim,et al.  High-performance n-type organic field-effect transistors fabricated by ink-jet printing using a C60 derivative , 2009 .

[21]  Xiaoniu Yang,et al.  Relating the Morphology of Poly(p‐phenylene vinylene)/Methanofullerene Blends to Solar‐Cell Performance , 2004 .

[22]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .