Identification and development of nanoscintillators for biotechnology applications

[1]  Muriel Barberi-Heyob,et al.  X-ray-Induced singlet oxygen activation with nanoscintillator-coupled porphyrins , 2013 .

[2]  M. Nikl,et al.  Scintillation response of Y3Al5O12:Pr3+ single crystal scintillators , 2013 .

[3]  Wusheng Xu,et al.  Optical, scintillation properties and defect study of Gd2Si2O7:Ce single crystal grown by floating zone method , 2013 .

[4]  Y. Yokota,et al.  Luminescence and scintillation mechanism in Ce3+ and Pr3+ doped (Lu,Y,Gd)3(Ga,Al)5O12 single crystal scintillators , 2013 .

[5]  A. Meijerink,et al.  Arsenic Formation on GaAs during Etching in HF Solutions: Relevance for the Epitaxial Lift-Off Process , 2013 .

[6]  Jun Lin,et al.  Defect-related luminescent materials: synthesis, emission properties and applications. , 2012, Chemical Society reviews.

[7]  K. Kamada,et al.  Growth and scintillation properties of Pr doped Gd3(Ga,Al)5O12 single crystals , 2012 .

[8]  M. Pospišil,et al.  Radiation-induced preparation of pure and Ce-doped lutetium aluminium garnet and its luminescent properties , 2012 .

[9]  M. Katagiri,et al.  Influence of powder particle size and scintillator layer thickness on the performance of Gd2O2S:Tb scintillators for neutron imaging , 2012 .

[10]  Liping Li,et al.  Size-induced variations in bulk/surface structures and their impact on photoluminescence properties of GdVO4:Eu3+ nanoparticles. , 2012, Physical chemistry chemical physics : PCCP.

[11]  N. Peréa-López,et al.  Photoluminescence Properties of Eu-Doped LaSr2AlO5 , 2012 .

[12]  J. McKittrick,et al.  Photo- and radioluminescence characteristics of bismuth germanate nanoparticles by sol–gel and pressure-assisted combustion synthesis , 2012 .

[13]  S. Derenzo,et al.  An Investigation of X-ray Luminosity versus Crystalline Powder Granularity , 2011 .

[14]  Sèmiyou. A. Osseni,et al.  New nanoplatform based on Gd2O2S:Eu3+ core: synthesis, characterization and use for in vitro bio-labelling , 2011 .

[15]  Rostyslav Boutchko,et al.  New scintillators discovered by high-throughput screening , 2011 .

[16]  Tuan Vo-Dinh,et al.  Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation. , 2011, ACS nano.

[17]  J. McKittrick,et al.  Luminescence enhancement of Y2O3:Eu3+ and Y2SiO5:Ce3+,Tb3+ core particles with SiO2 shells , 2011 .

[18]  Frederic Chaput,et al.  Luminescence and Scintillation Properties at the Nanoscale , 2010, IEEE Transactions on Nuclear Science.

[19]  Hua Yang,et al.  Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles , 2010 .

[20]  S. Shmurak,et al.  Nanoscintillators for Microscopic Diagnostics of Biological and Medical Objects and Medical Therapy , 2009, IEEE Transactions on NanoBioscience.

[21]  A. Vedda,et al.  Pr3+-doped complex oxide single crystal scintillators , 2009 .

[22]  K. Camphausen,et al.  Nanoscintillator Conjugates as Photodynamic Therapy-Based Radiosensitizers: Calculation of Required Physical Parameters , 2009, Radiation research.

[23]  Milan Makale,et al.  Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis , 2008, Proceedings of the National Academy of Sciences.

[24]  S. Shmurak,et al.  Advantages and Problems of Nanocrystalline Scintillators , 2008, IEEE Transactions on Nuclear Science.

[25]  E. Mckigney,et al.  Science and Application of Oxyorthosilicate Nanophosphors , 2008, IEEE Transactions on Nuclear Science.

[26]  P. Dorenbos,et al.  Advances in Yield Calibration of Scintillators , 2008, IEEE Transactions on Nuclear Science.

[27]  S. L. Westcott,et al.  X-ray luminescence of LaF3:Tb3+ and LaF3: Ce3+,Tb3+ water-soluble nanoparticles , 2008 .

[28]  A. Joly,et al.  Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation , 2008 .

[29]  E. Mckigney,et al.  Effects of Tb doping on the photoluminescence of Y2O3:Tb nanophosphors , 2007 .

[30]  R. E. Del Sesto,et al.  Nanocomposite scintillators for radiation detection and nuclear spectroscopy , 2007 .

[31]  J. McKittrick,et al.  Long‐Ultraviolet‐Excited White‐Light Emission in Rare‐Earth‐Activated Yttrium‐Oxyorthosilicate , 2007 .

[32]  A. Cheetham,et al.  Structure–property correlations in Ce-doped garnet phosphors for use in solid state lighting , 2007 .

[33]  D. Huo,et al.  Synthesis of barium fluoride nanoparticles by precipitation in ethanol–aqueous mixed solvents , 2007 .

[34]  P. Dorenbos,et al.  Development and characterization of highly efficient new cerium doped rare earth halide scintillator materials , 2006 .

[35]  M. Yu,et al.  Sol–gel synthesis and photoluminescence properties of spherical SiO2@LaPO4:Ce3+/Tb3+ particles with a core–shell structure , 2006 .

[36]  M. Yu,et al.  Sol-gel fabrication and photoluminescence properties of SiO2 @ Gd2O3:Eu3+ core-shell particles. , 2006, Journal of nanoscience and nanotechnology.

[37]  Wei Chen,et al.  Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. , 2006, Journal of nanoscience and nanotechnology.

[38]  Jung‐Kun Lee,et al.  Luminescent properties and reduced dimensional behavior of hydrothermally prepared Y2SiO5:Ce nanophosphors , 2006 .

[39]  K. Kamada,et al.  Growth and scintillation properties of Pr-doped Lu3Al5O12 crystals , 2006 .

[40]  W. Drozdowski,et al.  Scintillation properties of selected oxide monocrystals activated with Ce and Pr , 2006 .

[41]  P. Perriat,et al.  Preparing nanometer scaled Tb-doped Y2O3 luminescent powders by the polyol method , 2005 .

[42]  P. Perriat,et al.  Synthesis and optical characterization of Gd2O3:Eu3+ nanocrystals: surface states and VUV excitation , 2004 .

[43]  Mingmei Wu,et al.  Tailored photoluminescence of YAG:Ce phosphor through various methods , 2004 .

[44]  A. Speghini,et al.  Concentration-Dependent Near-Infrared to Visible Upconversion in Nanocrystalline and Bulk Y2O3:Er3+ , 2003 .

[45]  Indrajit Roy,et al.  Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. , 2003, Journal of the American Chemical Society.

[46]  P. Dorenbos,et al.  Scintillation properties of Lu2Si2O7:Ce3+, a fast and efficient scintillator crystal , 2003 .

[47]  J. McKittrick,et al.  Investigation of the physical properties of a blue-emitting phosphor produced using a rapid exothermic reaction , 2003 .

[48]  P. Dorenbos,et al.  High efficiency of lutetium silicate scintillators, Ce-doped LPS and LYSO crystals , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[49]  Marvin J. Weber,et al.  Inorganic scintillators: today and tomorrow , 2002 .

[50]  S. Mahurin,et al.  Nanocrystal‐based Scintillators for Radiation Detection , 2002 .

[51]  C. Eijk,et al.  Inorganic scintillators in medical imaging. , 2002 .

[52]  A. Wojtowicz,et al.  Luminescence and scintillation properties of YAG:Pr , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[53]  A. Meijerink,et al.  The influence of particle size on the luminescence quantum efficiency of nanocrystalline ZnO particles , 2001 .

[54]  T. Copeland,et al.  Effect of Particle Size on the Luminescent Properties of Europium Doped Yttrium Oxide Nano-Phosphors , 2001 .

[55]  William W. Moses,et al.  Scintillator requirements for medical imaging , 1999 .

[56]  J. McKittrick,et al.  The influence of processing parameters on luminescent oxides produced by combustion synthesis , 1999 .

[57]  Joanna McKittrick,et al.  Synthesis of Red‐Emitting, Small Particle Size Luminescent Oxides Using an Optimized Combustion Process , 1996 .

[58]  B. C. Grabmaier,et al.  Ceramic scintillators for X‐Ray computed tomography , 1992 .

[59]  Masaaki Kobayashi,et al.  Single crystals for radiation detectors , 1992 .

[60]  Charles L. Melcher,et al.  Applicability of barium fluoride and cadmium tungstate scintillators for well logging , 1989 .

[61]  R. Allemand,et al.  Barium fluoride — Inorganic scintillator for subnanosecond timing , 1983 .

[62]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .