A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements

Synthetic Aperture RADAR Interferometry (InSAR) provides a unique tool for the quantitative measurement of the Earth’s surface deformations induced by a variety of natural (such as volcanic eruptions, landslides and earthquakes) and anthropogenic (e.g., ground-water extraction in highly-urbanized areas, deterioration of buildings and public facilities) processes. In this framework, use of InSAR technology makes it possible the long-term monitoring of surface deformations and the analysis of relevant geodynamic phenomena. This review paper provides readers with a general overview of the InSAR principles and the recent development of the advanced multi-track InSAR combination methodologies, which allow to discriminate the 3-D components of deformation processes and to follow their temporal evolution. The increasing availability of SAR data collected by complementary illumination angles and from different RADAR instruments, which operate in various bands of the microwave spectrum (X-, L- and C-band), makes the use of multi-track/multi-satellite InSAR techniques very promising for the characterization of deformation patterns. A few case studies will be presented, with a particular focus on the recently proposed multi-track InSAR method known as the Minimum Acceleration (MinA) combination approach. The presented results evidence the validity and the relevance of the investigated InSAR approaches for geospatial analyses.

[1]  Francesco De Zan,et al.  TOPSAR: Terrain Observation by Progressive Scans , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[2]  P. Rosen,et al.  Surface Displacement of the 17 May 1993 Eureka Valley, California, Earthquake Observed by SAR Interferometry , 1995, Science.

[3]  F. Henderson,et al.  Principles and Applications of Imaging Radar , 1998 .

[4]  Lei Zhang,et al.  3D coseismic Displacement of 2010 Darfield, New Zealand earthquake estimated from multi-aperture InSAR and D-InSAR measurements , 2012, Journal of Geodesy.

[5]  Helko Breit,et al.  Automatic Extraction of Traffic Flows Using TerraSAR-X Along-Track Interferometry , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Andrew Hooper,et al.  A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches , 2008 .

[7]  Andrea Manconi,et al.  Four-dimensional surface evolution of active rifting from spaceborne SAR data , 2016 .

[8]  S. Ahmed,et al.  RADARSAT Mission Requirements and Concept , 1993 .

[9]  Franz J. Meyer,et al.  Characterization and correction of residual RFI signatures in operationally processed ALOS PALSAR imagery , 2012 .

[10]  Petra Kaufmann,et al.  Two Dimensional Phase Unwrapping Theory Algorithms And Software , 2016 .

[11]  Christophe Delacourt,et al.  Post‐eruptive deformation associated with the 1986–87 and 1989 lava flows of Etna detected by radar interferometry , 1997 .

[12]  Antonio Pepe,et al.  The 2004–2006 uplift episode at Campi Flegrei caldera (Italy): Constraints from SBAS‐DInSAR ENVISAT data and Bayesian source inference , 2008 .

[13]  Frank H. Webb,et al.  Neutral atmospheric delay in interferometric synthetic aperture radar applications: Statistical description and mitigation , 2003 .

[14]  Mario Costantini,et al.  A novel phase unwrapping method based on network programming , 1998, IEEE Trans. Geosci. Remote. Sens..

[15]  Lei Zhang,et al.  3-D movement mapping of the alpine glacier in Qinghai-Tibetan Plateau by integrating D-InSAR, MAI and Offset-Tracking: Case study of the Dongkemadi Glacier , 2014 .

[16]  H. Zebker,et al.  Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation , 1999 .

[17]  Thierry Rabaute,et al.  Radar interferometry: limits and potential , 1993, IEEE Trans. Geosci. Remote. Sens..

[18]  J. Carstensen,et al.  Three‐dimensional surface motion maps estimated from combined interferometric synthetic aperture radar and GPS data , 2002 .

[19]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[20]  M. Crosetto Calibration and validation of SAR interferometry for DEM generation , 2002 .

[21]  Jong-Sen Lee,et al.  Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery , 1994, IEEE Trans. Geosci. Remote. Sens..

[22]  Hui Lin,et al.  Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers , 2012 .

[23]  Min Liu,et al.  The 2015-2016 Ground Displacements of the Shanghai Coastal Area Inferred from a Combined COSMO-SkyMed/Sentinel-1 DInSAR Analysis , 2017, Remote. Sens..

[24]  Tamsin A. Mather,et al.  Applicability of InSAR to tropical volcanoes: insights from Central America , 2013 .

[25]  Qian Sun,et al.  Kalman-Filter-Based Approach for Multisensor, Multitrack, and Multitemporal InSAR , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Fabiana Calò,et al.  Enhanced landslide investigations through advanced DInSAR techniques: The Ivancich case study, Assisi, Italy , 2014 .

[27]  Antonio Moccia,et al.  Spaceborne along-track SAR interferometry: performance analysis and mission scenarios , 2001 .

[28]  Antonio Pepe,et al.  Modeling of ALOS and COSMO-SkyMed satellite data at Mt Etna: Implications on relation between seismic activation of the Pernicana fault system and volcanic unrest , 2012 .

[29]  Fabiana Calò,et al.  The Space-Borne SBAS-DInSAR Technique as a Supporting Tool for Sustainable Urban Policies: The Case of Istanbul Megacity, Turkey , 2015, Remote. Sens..

[30]  Franz J. Meyer,et al.  A statistical model of ionospheric signals in low-frequency SAR data , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[31]  C. Werner,et al.  Interferometric point target analysis for deformation mapping , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[32]  Yann Klinger,et al.  September 2005 Manda Hararo‐Dabbahu rifting event, Afar (Ethiopia): Constraints provided by geodetic data , 2009 .

[33]  B. Kampes Radar Interferometry: Persistent Scatterer Technique , 2006 .

[34]  P. Rosen,et al.  Updated repeat orbit interferometry package released , 2004 .

[35]  Sergey V. Samsonov,et al.  Multidimensional time‐series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province , 2012 .

[36]  Fabiana Calò,et al.  A Minimum Acceleration Approach for the Retrieval of Multiplatform InSAR Deformation Time Series , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[37]  Fabiana Calò,et al.  How second generation SAR systems are impacting the analysis of ground deformation , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[38]  Urs Wegmüller,et al.  Glacier motion estimation using SAR offset-tracking procedures , 2002, IEEE Trans. Geosci. Remote. Sens..

[39]  Antonio Pepe,et al.  Long-term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: the case study of the city of Rome, Italy , 2011 .

[40]  Antonio Pepe,et al.  Analysis of Ground Deformation Detected Using the SBAS-DInSAR Technique in Umbria, Central Italy , 2009 .

[41]  Antonio Pepe,et al.  Improved EMCF-SBAS Processing Chain Based on Advanced Techniques for the Noise-Filtering and Selection of Small Baseline Multi-Look DInSAR Interferograms , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[42]  S. Hensley,et al.  Observations and mitigation of RFI in ALOS PALSAR SAR data: Implications for the DESDynI mission , 2008, 2008 IEEE Radar Conference.

[43]  R. Goldstein,et al.  Mapping small elevation changes over large areas: Differential radar interferometry , 1989 .

[44]  Malcolm Davidson,et al.  GMES Sentinel-1 mission , 2012 .

[45]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[46]  Claudio Prati,et al.  A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[47]  D. Massonnet,et al.  Deflation of Mount Etna monitored by spaceborne radar interferometry , 1995, Nature.

[48]  Stefano Tebaldini,et al.  On the Exploitation of Target Statistics for SAR Interferometry Applications , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[49]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[50]  Viale A. Doria,et al.  SISTEM: A New Approach to Obtain Three-Dimensional Displacement Maps by Integrating GPS and DInSAR Data , 2010 .

[51]  Qifeng Yu,et al.  Directionally Adaptive Filter for Synthetic Aperture Radar Interferometric Phase Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Michele Manunta,et al.  Geometrical SAR image registration , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[53]  Yngvar Larsen,et al.  Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. , 2010 .

[54]  Antonio Iodice,et al.  Assessing the activity of a large landslide in southern Italy by ground-monitoring and SAR interferometric techniques , 2012 .

[55]  Carlos López-Martínez,et al.  On the Extension of Multidimensional Speckle Noise Model From Single-Look to Multilook SAR Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[56]  Meng Wei,et al.  Decorrelation of L-Band and C-Band Interferometry Over Vegetated Areas in California , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Thomas R. Walter,et al.  Caldera-scale inflation of the Lazufre volcanic area, South America: Evidence from InSAR , 2008 .

[58]  Haifeng Huang,et al.  An Efficient and Adaptive Approach for Noise Filtering of SAR Interferometric Phase Images , 2011, IEEE Geoscience and Remote Sensing Letters.

[59]  Hideki Ueda,et al.  Advanced interferometric synthetic aperture radar (InSAR) time series analysis using interferograms of multiple‐orbit tracks: A case study on Miyake‐jima , 2011 .

[60]  Masanobu Shimada,et al.  Accuracy and Resolution of ALOS Interferometry: Vector Deformation Maps of the Father's Day Intrusion at Kilauea , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[61]  Franz J. Meyer,et al.  A review of ionospheric effects in low-frequency SAR — Signals, correction methods, and performance requirements , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[62]  Konstantinos Papathanassiou,et al.  A new technique for noise filtering of SAR interferometric phase images , 1998, IEEE Trans. Geosci. Remote. Sens..

[63]  Virginie Pinel,et al.  Presentation Of The Small Baseline NSBAS Processing Chain On A Case Example: The ETNA Deformation Monitoring From 2003 to 2010 Using ENVISAT Data , 2011 .

[64]  Paolo Berardino,et al.  Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry , 2006 .

[65]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[66]  Thomas J. Flynn,et al.  TWO-DIMENSIONAL PHASE UNWRAPPING WITH MINIMUM WEIGHTED DISCONTINUITY , 1997 .

[67]  Laurence Gray,et al.  Using multiple RADARSAT InSAR pairs to estimate a full three‐dimensional solution for glacial ice movement , 2011 .

[68]  Antonio Pepe,et al.  FAST TRACK PAPER: Surface deformation in the Abruzzi region, Central Italy, from multitemporal DInSAR analysis , 2009 .

[69]  M. Crosetto,et al.  Early detection and in-depth analysis of deformation phenomena by radar interferometry , 2005 .

[70]  H. Zebker,et al.  A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers , 2004 .

[71]  Riccardo Lanari,et al.  A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data , 2006 .

[72]  Xiaoli Ding,et al.  Inferring three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits , 2010 .

[73]  D. Agnew,et al.  The complete (3‐D) surface displacement field in the epicentral area of the 1999 MW7.1 Hector Mine Earthquake, California, from space geodetic observations , 2001 .

[74]  Paul A. Rosen,et al.  Transient strain accumulation and fault interaction in the eastern California shear zone , 2001 .

[75]  Laurent Ferro-Famil,et al.  Interference suppression in synthesized SAR images , 2005, IEEE Geoscience and Remote Sensing Letters.

[76]  P. Rosen,et al.  SYNTHETIC APERTURE RADAR INTERFEROMETRY TO MEASURE EARTH'S SURFACE TOPOGRAPHY AND ITS DEFORMATION , 2000 .

[77]  Charles Elachi,et al.  Spaceborne Radar Remote Sensing: Applications and Techniques , 1987 .

[78]  Riccardo Lanari,et al.  Interferometric synthetic aperture radar–GPS integration: Interseismic strain accumulation across the Hunter Mountain fault in the eastern California shear zone , 2010 .

[79]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[80]  Franz J. Meyer,et al.  The Potential of Low-Frequency SAR Systems for Mapping Ionospheric TEC Distributions , 2006, IEEE Geoscience and Remote Sensing Letters.

[81]  D. Sandwell,et al.  Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit , 2005, Nature.

[82]  Antonio Pepe,et al.  Deformation Time-Series Generation in Areas Characterized by Large Displacement Dynamics: The SAR Amplitude Pixel-Offset SBAS Technique , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[83]  K. Tomiyasu,et al.  Tutorial review of synthetic-aperture radar (SAR) with applications to imaging of the ocean surface , 1978, Proceedings of the IEEE.

[84]  Alessandro Parizzi,et al.  Adaptive InSAR Stack Multilooking Exploiting Amplitude Statistics: A Comparison Between Different Techniques and Practical Results , 2011, IEEE Geoscience and Remote Sensing Letters.

[85]  Cesidio Bianchi,et al.  Natural and man-made terrestrial electromagnetic noise: an outlook , 2007 .

[86]  Zhong Lu,et al.  The postseismic response to the 2002 M 7.9 Denali Fault earthquake: Constraints from InSAR 2003-2005 , 2009 .

[87]  F. Tupin,et al.  Time series analysis of Mexico City subsidence constrained by radar interferometry , 2009 .

[88]  Jordi J. Mallorquí,et al.  Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[89]  Marie-Pierre Doin,et al.  Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry , 2012 .

[90]  F. Rocca,et al.  SAR data focusing using seismic migration techniques , 1991 .

[91]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[92]  Yoshio Inoue,et al.  Ku- and C-band SAR for discriminating agricultural crop and soil conditions , 1998, IEEE Trans. Geosci. Remote. Sens..

[93]  Sang-Ho Yun,et al.  Stress Control of Deep Rift Intrusion at Mauna Loa Volcano, Hawaii , 2007, Science.

[94]  Antonio Pepe,et al.  Advanced differential interferometric SAR techniques , 2007 .

[95]  Paul A. Rosen,et al.  Co-seismic slip from the 1995 July 30 Mw= 8.1 Antofagasta, Chile, earthquake as constrained by InSAR and GPS observations , 2002 .

[96]  Jean-Marie Nicolas,et al.  Topographic SAR interferometry formulation for high-precision DEM generation , 2002, IEEE Trans. Geosci. Remote. Sens..

[97]  L. C. Graham,et al.  Synthetic interferometer radar for topographic mapping , 1974 .

[98]  D. Ross,et al.  On the detectability of ocean surface waves by real and synthetic aperture radar , 1981 .

[99]  Antonio Pepe,et al.  SBAS-Based Satellite Orbit Correction for the Generation of DInSAR Time-Series: Application to RADARSAT-1 Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[100]  Antonio Pepe,et al.  A Quantitative Assessment of DInSAR Measurements of Interseismic Deformation: The Southern San Andreas Fault Case Study , 2012, Pure and Applied Geophysics.

[101]  Antonio Pepe,et al.  A Minimum Curvature Combination Method for the Generation of Multi-Platform DInSAR Deformation Time-Series , 2015 .

[102]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 1999, Remote Sensing.

[103]  Michele Manunta,et al.  Coseismic Fault Model of Mw 8.3 2015 Illapel Earthquake (Chile) Retrieved from Multi-Orbit Sentinel1-A DInSAR Measurements , 2016, Remote. Sens..

[104]  Richard M. Goldstein,et al.  Atmospheric limitations to repeat‐track radar interferometry , 1995 .

[105]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.

[106]  Jean-Philippe Avouac,et al.  Multi-Link InSAR Time Series: Enhancement of a Wrapped Interferometric Database , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[107]  Christophe Delacourt,et al.  Tropospheric corrections of SAR interferograms with strong topography. Application to Etna , 1998 .

[108]  Yan Jiang,et al.  City subsidence observed with persistent scatterer InSAR , 2010 .

[109]  Francesco Casu,et al.  Atmospheric corrections in interferometric synthetic aperture radar surface deformation – a case study of the city of Mendoza, Argentina , 2013 .

[110]  Piyush Agram,et al.  Multiscale InSAR Time Series (MInTS) analysis of surface deformation , 2011 .

[111]  N. Hamano,et al.  Digital processing of synthetic aperture radar data , 1984 .

[112]  Mike P. Stewart,et al.  A modification to the Goldstein radar interferogram filter , 2003, IEEE Trans. Geosci. Remote. Sens..

[113]  HansenPer Christian The truncated SVD as a method for regularization , 1987 .

[114]  Otmar Loffeld,et al.  A novel approach to accurate baseline estimation , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[115]  Riccardo Lanari,et al.  Comparison of Persistent Scatterers and Small Baseline Time-Series InSAR Results: A Case Study of the San Francisco Bay Area , 2011, IEEE Geoscience and Remote Sensing Letters.

[116]  G. Krieger,et al.  Analysis of multistatic configurations for spaceborne SAR interferometry , 2003 .

[117]  Franz J. Meyer,et al.  Correction and Characterization of Radio Frequency Interference Signatures in L-Band Synthetic Aperture Radar Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[118]  E. Chapin,et al.  Impact of the ionosphere on an L-band space based radar , 2006, 2006 IEEE Conference on Radar.

[119]  Riccardo Lanari,et al.  Synthetic Aperture Radar Processing , 1999 .

[120]  R. Bamler,et al.  Phase statistics of interferograms with applications to synthetic aperture radar. , 1994, Applied optics.

[121]  Howard Zebker,et al.  Edgelist phase unwrapping algorithm for time series InSAR analysis. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[122]  Paco López-Dekker,et al.  Single-Pass Bistatic SAR Interferometry Using Fixed-Receiver Configurations: Theory and Experimental Validation , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[123]  Manoochehr Shirzaei,et al.  A seamless multitrack multitemporal InSAR algorithm , 2015 .

[124]  Charles Werner,et al.  Accuracy of topographic maps derived from ERS-1 interferometric radar , 1994, IEEE Trans. Geosci. Remote. Sens..

[125]  Antonio Pepe,et al.  Spaceborne Synthetic Aperture Radar Data Focusing on Multicore-Based Architectures , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[126]  Franz J. Meyer,et al.  Comparison of Small Baseline Interferometric SAR Processors for Estimating Ground Deformation , 2016, Remote. Sens..

[127]  Howard A. Zebker,et al.  Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network , 2006 .

[128]  G. Krieger,et al.  Spaceborne bi- and multistatic SAR: potential and challenges , 2006 .

[129]  J. Varah Pitfalls in the Numerical Solution of Linear Ill-Posed Problems , 1981 .

[130]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[131]  Piyush Agram,et al.  A noise model for InSAR time series , 2015 .

[132]  T. Wright,et al.  InSAR Observations of Low Slip Rates on the Major Faults of Western Tibet , 2004, Science.

[133]  Antonio Pepe,et al.  The Use of C-/X-Band Time-Gapped SAR Data and Geotechnical Models for the Study of Shanghai's Ocean-Reclaimed Lands through the SBAS-DInSAR Technique , 2016, Remote. Sens..

[134]  H.W.J. van Kasteren,et al.  Ground-based X-band (3-cm wave) radar backscattering of agricultural crops. II. Wheat, barley, and oats; the impact of canopy structure , 1990 .

[135]  E. Rodríguez,et al.  Theory and design of interferometric synthetic aperture radars , 1992 .

[136]  Michele Manunta,et al.  A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[137]  Richard K. Moore,et al.  Microwave Remote Sensing, Active and Passive , 1982 .

[138]  R. Bamler,et al.  Synthetic aperture radar interferometry , 1998 .

[139]  Joong-Sun Won,et al.  An Improvement of the Performance of Multiple-Aperture SAR Interferometry (MAI) , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[140]  T. Wright,et al.  Toward mapping surface deformation in three dimensions using InSAR , 2004 .

[141]  Takanori Iwata Precision attitude and position determination for the Advanced Land Observing Satellite (ALOS) , 2005, SPIE Asia-Pacific Remote Sensing.

[142]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[143]  Antonio Pepe,et al.  On the Extension of the Minimum Cost Flow Algorithm for Phase Unwrapping of Multitemporal Differential SAR Interferograms , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[144]  Michael Inggs,et al.  Efficient RFI suppression in SAR using LMS adaptive filter integrated with range/Doppler algorithm , 1999 .