The Maximum State Complexity for Finite Languages

A measure of the complexity of a regular language L is the number of states in the smallest DFA accepting L. We study this quantity in the case of finite languages over a non-unary alphabet. We compute the maximum number of states of a minimal deterministic finite automaton (DFA) recognizing words of length less than or equal to some given integer. We also compute the maximum number of states of a minimal complete DFA that accepts only words of length equal to a given integer. For both cases, we prove that the upper bound can be reached by an explicit construction of a DFA, and we compute the asymptotic behavior of the upper bound.

[1]  Jarkko Kari,et al.  Image compression using weighted finite automata , 1993, Comput. Graph..

[2]  T. Head Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. , 1987, Bulletin of mathematical biology.

[3]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[4]  Jozef Gruska,et al.  Descriptional Complexity (of Languages) - A Short Survey , 1976, MFCS.

[5]  I. N. Sneddon,et al.  Theory Of Automata , 1969 .

[6]  Sheng Yu,et al.  On the state complexity of intersection of regular languages , 1991, SIGA.

[7]  Sheng Yu,et al.  NFA to DFA Transformation for Finite Languages over Arbitrary Alphabets , 1998, J. Autom. Lang. Comb..

[8]  Tero Harju,et al.  Splicing semigroups of dominoes and DNA , 1991, Discret. Appl. Math..

[9]  Sheng Yu,et al.  The State Complexities of Some Basic Operations on Regular Languages , 1994, Theor. Comput. Sci..

[10]  Marilena Barnabei,et al.  Some properties of characteristic polynomials and applications to T-lattices , 1991, Discret. Math..

[11]  Jean-Marc Champarnaud,et al.  A maxmin problem on finite automata , 1989, Discret. Appl. Math..

[12]  Alfred V. Aho,et al.  Compilers: Principles, Techniques, and Tools , 1986, Addison-Wesley series in computer science / World student series edition.

[13]  Arto Salomaa,et al.  Formal languages , 1973, Computer science classics.

[14]  Jeffrey Shallit,et al.  Automaticity I: Properties of a Measure of Descriptional Complexity , 1996, J. Comput. Syst. Sci..

[15]  Sheng Yu,et al.  Synchronization expressions and languages , 1994, Proceedings of 1994 6th IEEE Symposium on Parallel and Distributed Processing.