Big Data Processing: Application of Parallel Processing Technique to Big Data by Using MapReduce

This chapter is a description of MapReduce, which serves as a programming algorithm for distributed computing in a parallel manner on huge chunks of data that can easily execute on commodity servers thus reducing the costs for server maintenance and removal of requirement of having dedicated servers towards for running these processes. This chapter is all about the various approaches towards MapReduce programming model and how to use it in an efficient manner for scalable text-based analysis in various domains like machine learning, data analytics, and data science. Hence, it deals with various approaches of using MapReduce in these fields and how to apply various techniques of MapReduce in these fields effectively and fitting the MapReduce programming model into any text mining application. Big Data Processing: Application of Parallel Processing Technique to Big Data by Using MapReduce