Synchronization of multiple coupled rf-SQUID flux qubits

A practical strategy for synchronizing the properties of compound Josephson junction (CJJ) radio frequency monitored superconducting quantum interference device (rf-SQUID) qubits on a multi-qubit chip has been demonstrated. The impact of small ( 1%) fabrication variations in qubit inductance and critical current can be minimized by the application of a custom- tuned flux offset to the CJJ structure of each qubit. This strategy allows for a simultaneous synchronization of the qubit persistent current and tunnel splitting over a range of external bias parameters that is relevant for the implementation of an adiabatic quantum processor.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  A. Messiah Quantum Mechanics , 1961 .

[3]  Lev Davidovich Landau,et al.  CHAPTER I – THE BASIC CONCEPTS OF QUANTUM MECHANICS , 1977 .

[4]  Han,et al.  Thermal activation in a two-dimensional potential. , 1989, Physical review letters.

[5]  Lukens,et al.  Observation of incoherent relaxation by tunneling in a macroscopic two-state system. , 1991, Physical review letters.

[6]  Roberto Ramos,et al.  Design for effective thermalization of junctions for quantum coherence , 2001 .

[7]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[8]  Anthony J Leggett,et al.  Quantum computing and quantum bits in mesoscopic systems , 2004 .

[9]  John M Martinis,et al.  Decoherence in josephson phase qubits from junction resonators. , 2004, Physical review letters.

[10]  T Yamamoto,et al.  Quantum noise in the josephson charge qubit. , 2004, Physical review letters.

[11]  Clare C. Yu,et al.  Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.

[12]  Seth Lloyd,et al.  Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation , 2007, SIAM J. Comput..

[13]  Erik Lucero,et al.  1/f Flux noise in Josephson phase qubits. , 2007, Physical review letters.

[14]  Endre Boros,et al.  Local search heuristics for Quadratic Unconstrained Binary Optimization (QUBO) , 2007, J. Heuristics.

[15]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[16]  J. Biamonte,et al.  Realizable Hamiltonians for Universal Adiabatic Quantum Computers , 2007, 0704.1287.

[17]  D. Averin,et al.  Macroscopic resonant tunneling in the presence of low frequency noise. , 2007, Physical review letters.

[18]  M. W. Johnson,et al.  Probing noise in flux qubits via macroscopic resonant tunneling. , 2007, Physical review letters.

[19]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[20]  H. Meyer,et al.  Consistency of ground state and spectroscopic measurements on flux qubits. , 2008, Physical review letters.

[21]  Jens Koch,et al.  Suppressing Charge Noise Decoherence in Superconducting Charge Qubits , 2007, 0712.3581.

[22]  M. W. Johnson,et al.  Compound Josephson-junction coupler for flux qubits with minimal crosstalk , 2009, 0904.3784.

[23]  G. Torrioli,et al.  Coherent oscillations in a superconducting tunable flux qubit manipulated without microwaves , 2008, 0809.1331.

[24]  C. M. Chandrashekar,et al.  Direct observation of quantum criticality in Ising spin chains , 2008, 0808.1536.

[25]  M. W. Johnson,et al.  Geometrical dependence of the low-frequency noise in superconducting flux qubits , 2008, 0812.0378.

[26]  C. Harmans,et al.  Tuning the gap of a superconducting flux qubit. , 2008, Physical review letters.