Empirical Likelihood for a Heteroscedastic Partial Linear Model

Consider the heteroscedastic regression model , where , β is a p × 1 column vector of unknown parameter, (X i , T i , Z i ) are random design points, Y i are the response variables, g(·) is an unknown function defined on the closed interval [0, 1], {e i , ℱ i } is a sequence of martingale differences. When f is known and unknown cases, we propose the empirical log-likelihood ratio statistics for the parameter β. For each case, a nonparametric version of Wilks' theorem is derived. The results are then used to construct confidence regions of the parameter. Simulation study shows that the empirical likelihood method performs better than a normal approximation-based approach.

[1]  Han-Ying Liang,et al.  On a semiparametric regression model whose errors form a linear process with negatively associated innovations , 2006 .

[2]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[3]  Alexandr A. Borovkov,et al.  Limit Theorems of Probability Theory. , 2011 .

[4]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[5]  Xian Zhou,et al.  CONVERGENCE RATES OF ESTIMATORS IN PARTIAL LINEAR REGRESSION MODELS WITH MA(∞) ERROR PROCESS , 2002 .

[6]  M. Boozer Econometric Analysis of Panel Data Badi H. Baltagi Wiley, 1995 , 1997, Econometric Theory.

[7]  Gaorong Li,et al.  Empirical Likelihood Confidence Region for the Parameter in a Partially Linear Errors-in-Variables Model , 2008 .

[8]  Wolfgang Härdle,et al.  Partially Linear Models , 2000 .

[9]  Guo-Liang Fan,et al.  Berry-Esseen type bounds of estimators in a semiparametric model with linear process errors , 2009, J. Multivar. Anal..

[10]  Lixing Zhu,et al.  Empirical likelihood confidence regions in a partially linear single‐index model , 2006 .

[11]  Lixing Zhu,et al.  Empirical likelihood for single-index models , 2006 .

[12]  V. Statulevičius,et al.  Limit Theorems of Probability Theory , 2000 .

[13]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[14]  Yong Zhou,et al.  Statistical inference of partially linear regression models with heteroscedastic errors , 2007 .

[15]  Germán Aneiros-Pérez,et al.  MODIFIED CROSS-VALIDATION IN SEMIPARAMETRIC REGRESSION MODELS WITH DEPENDENT ERRORS , 2001 .

[16]  Jian Shi,et al.  Empirical Likelihood for Partially Linear Models , 2000 .

[17]  Raymond J. Carroll,et al.  Adapting for Heteroscedasticity in Linear Models , 1982 .

[18]  Han-Ying Liang,et al.  Asymptotics of estimators in semi-parametric model under NA samples , 2006 .

[19]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .

[20]  Vo Anh,et al.  Semiparametric regression under long-range dependent errors , 1999 .

[21]  Jinhong You,et al.  Testing heteroscedasticity in partially linear regression models , 2005 .

[22]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[23]  H. Cui,et al.  Empirical likelihood inference for partial linear models under martingale difference sequence , 2008 .

[24]  A. A. Weiss,et al.  Semiparametric estimates of the relation between weather and electricity sales , 1986 .

[25]  Clive W. J. Granger,et al.  Semiparametric estimates of the relation between weather and electricity sales , 1986 .

[26]  Bing-Yi Jing,et al.  Empirical likelihood for partial linear models , 2003 .

[27]  Han-Ying Liang,et al.  Asymptotic normality in partial linear models based on dependent errors , 2009 .

[28]  P. Robinson Asymptotically efficient estimation in the presence of heteroskedasticity of unknown form , 1987 .

[29]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[30]  Feng Liu,et al.  Empirical likelihood based diagnostics for heteroscedasticity in partially linear errors-in-variables models , 2009 .

[31]  Raymond J. Carroll,et al.  Second order effects in semiparametric weighted least squares regression , 1988 .