Probability calculus of fractional order and fractional Taylor's series application to Fokker-Planck equation and information of non-random functions

Abstract A probability distribution of fractional (or fractal) order is defined by the measure μ{ d x } =  p ( x )(d x ) α , 0  α f ( x + h ) = E α ( D x α h α ) f ( x ) provided by the modified Riemann Liouville definition, one can expand a probability calculus parallel to the standard one. A Fourier’s transform of fractional order using the Mittag–Leffler function is introduced, together with its inversion formula; and it provides a suitable generalization of the characteristic function of fractal random variables. It appears that the state moments of fractional order are more especially relevant. The main properties of this fractional probability calculus are outlined, it is shown that it provides a sound approach to Fokker–Planck equation which are fractional in both space and time, and it provides new results in the information theory of non-random functions.

[1]  L. Decreusefond,et al.  Stochastic Analysis of the Fractional Brownian Motion , 1999 .

[2]  R. Hilfer FRACTIONAL TIME EVOLUTION , 2000 .

[3]  Guy Jumarie,et al.  On the representation of fractional Brownian motion as an integral with respect to (dt)alpha , 2005, Appl. Math. Lett..

[4]  Kiran M. Kolwankar,et al.  Local Fractional Fokker-Planck Equation , 1998 .

[5]  I. Podlubny Fractional differential equations , 1998 .

[6]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[7]  L. M. B. C. Campos,et al.  On a Concept of Derivative of Complex Order with Applications to Special Functions , 1984 .

[8]  Guy Jumarie,et al.  Lagrangian mechanics of fractional order, Hamilton–Jacobi fractional PDE and Taylor’s series of nondifferentiable functions , 2007 .

[9]  Guy Jumarie,et al.  On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion , 2005, Appl. Math. Lett..

[10]  K. Falconer Techniques in fractal geometry , 1997 .

[11]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[12]  B. Mandelbrot Fractals and Scaling In Finance: Discontinuity, Concentration, Risk , 2010 .

[13]  G. Jumarie,et al.  Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results , 2006, Comput. Math. Appl..

[14]  B. Mandelbrot,et al.  A CLASS OF MICROPULSES AND ANTIPERSISTENT FRACTIONAL BROWNIAN MOTION , 1995 .

[15]  Kiran M. Kolwankar,et al.  Hölder exponents of irregular signals and local fractional derivatives , 1997, chao-dyn/9711010.

[16]  A. Zemanian,et al.  Distribution theory and transform analysis , 1966 .

[17]  Kiyosi Itô Stochastic Differential Equations , 2018, The Control Systems Handbook.

[18]  Simon A. Levin,et al.  Frontiers in Mathematical Biology , 1995 .

[19]  M. E. Naschie,et al.  Elementary prerequisites for E-infinity . (Recommended background readings in nonlinear dynamics, geometry and topology) , 2006 .

[20]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[21]  Jacques Lévy Véhel,et al.  Fractal probability functions-an application to image analysis , 1991, CVPR.

[22]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[23]  Guy Jumarie,et al.  New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations , 2006, Math. Comput. Model..

[24]  B. Øksendal,et al.  FRACTIONAL WHITE NOISE CALCULUS AND APPLICATIONS TO FINANCE , 2003 .

[25]  A. Barabasi,et al.  Fractal concepts in surface growth , 1995 .

[26]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[27]  Benoit B. Mandelbrot,et al.  Alternative micropulses and fractional Brownian motion , 1996 .

[28]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[29]  T. Osler Taylor’s Series Generalized for Fractional Derivatives and Applications , 1971 .

[30]  G. Jumarie Stochastic differential equations with fractional Brownian motion input , 1993 .

[31]  B. West Fractal probability measures of learning. , 2001, Methods.

[32]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[33]  M. Al-Akaidi Fractal Speech Processing , 2004 .

[34]  J. Schlichter,et al.  Protein dynamics at low temperatures , 2000 .