Codifference as a practical tool to measure interdependence

Correlation and spectral analysis represent the standard tools to study interdependence in statistical data. However, for the stochastic processes with heavy-tailed distributions such that the variance diverges, these tools are inadequate. The heavy-tailed processes are ubiquitous in nature and finance. We here discuss codifference as a convenient measure to study statistical interdependence, and we aim to give a short introductory review of its properties. By taking different known stochastic processes as generic examples, we present explicit formulas for their codifferences. We show that for the Gaussian processes codifference is equivalent to covariance. For processes with finite variance these two measures behave similarly with time. For the processes with infinite variance the covariance does not exist, however, the codifference is relevant. We demonstrate the practical importance of the codifference by extracting this function from simulated as well as real data taken from turbulent plasma of fusion device and financial market. We conclude that the codifference serves as a convenient practical tool to study interdependence for stochastic processes with both infinite and finite variances as well.

[1]  Aleksei V. Chechkin,et al.  Levy Statistics and Anomalous Transport: Levy Flights and Subdiffusion , 2007, Encyclopedia of Complexity and Systems Science.

[2]  Yaozhong Hu,et al.  Least squares estimator for Ornstein―Uhlenbeck processes driven by α-stable motions , 2009 .

[3]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[4]  Martine Chevrollier,et al.  Lévy flights of photons in hot atomic vapours , 2009, 0904.2454.

[5]  M. Meerschaert,et al.  The Fractional Poisson Process and the Inverse Stable Subordinator , 2010, 1007.5051.

[6]  A. Weron,et al.  Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .

[7]  Mark M. Meerschaert,et al.  Tempered stable Lévy motion and transient super-diffusion , 2010, J. Comput. Appl. Math..

[8]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[9]  Rosario N. Mantegna,et al.  An Introduction to Econophysics: Contents , 1999 .

[10]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[11]  Jeffrey M. Hausdorff,et al.  Long-range anticorrelations and non-Gaussian behavior of the heartbeat. , 1993, Physical review letters.

[12]  M. Shlesinger,et al.  Comment on "Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight" , 1995, Physical review letters.

[13]  Rosario N. Mantegna,et al.  Turbulence and financial markets , 1996, Nature.

[14]  P D Ditlevsen Anomalous jumping in a double-well potential. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  B. Gnedenko,et al.  Limit distributions for sums of shrunken random variables , 1954 .

[16]  P. Barthelemy,et al.  A Lévy flight for light , 2008, Nature.

[17]  J. Klafter,et al.  Lévy, Ornstein–Uhlenbeck, and Subordination: Spectral vs. Jump Description , 2005 .

[18]  J. Holtsmark,et al.  Über die Verbreiterung von Spektrallinien , 1919 .

[19]  S. Rachev,et al.  Stable Paretian Models in Finance , 2000 .

[20]  P. Levy,et al.  Calcul des Probabilites , 1926, The Mathematical Gazette.

[21]  Agnieszka Wyłomańska,et al.  Recognition of stable distribution with Lévy index α close to 2. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[23]  J. McCulloch,et al.  Simple consistent estimators of stable distribution parameters , 1986 .

[24]  Oldrich A. Vasicek An equilibrium characterization of the term structure , 1977 .

[25]  A. Wyłomańska The tempered stable process with infinitely divisible inverse subordinators , 2013 .

[26]  Svetlozar T. Rachev,et al.  Tempered stable and tempered infinitely divisible GARCH models , 2010 .

[27]  D. del-Castillo-Negrete,et al.  Truncation effects in superdiffusive front propagation with Lévy flights. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  S. Kotz,et al.  The Laplace Distribution and Generalizations , 2012 .

[29]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[30]  C. Klüppelberg,et al.  PARAMETER-ESTIMATION FOR ARMA MODELS WITH INFINITE VARIANCE INNOVATIONS , 1995 .

[31]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[32]  M. R. Leadbetter Poisson Processes , 2011, International Encyclopedia of Statistical Science.

[33]  P. Chavanis Kinetic theory of spatially homogeneous systems with long-range interactions: III. Application to power law potentials, plasmas, stellar systems, and to the HMF model , 2013, 1303.1004.

[34]  H. Eugene Stanley,et al.  Statistical physics and economic fluctuations: do outliers exist? , 2003 .

[35]  V. Zolotarev One-dimensional stable distributions , 1986 .

[36]  Szymon Borak,et al.  Models for Heavy-tailed Asset Returns , 2010 .

[37]  A. Chechkin,et al.  First passage behaviour of fractional Brownian motion in two-dimensional wedge domains , 2011, 1102.3633.

[38]  Dedi Rosadi,et al.  Testing for independence in heavy-tailed time series using the codifference function , 2009, Comput. Stat. Data Anal..

[39]  Karina Weron,et al.  Complete description of all self-similar models driven by Lévy stable noise. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  D. Sornette,et al.  Stretched exponential distributions in nature and economy: “fat tails” with characteristic scales , 1998, cond-mat/9801293.

[41]  J. Klafter,et al.  Correlations in a generalized elastic model: fractional Langevin equation approach. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  D. R. Kulkarni,et al.  Evidence of Lévy stable process in tokamak edge turbulence , 2001 .

[43]  J. Rosínski Tempering stable processes , 2007 .

[44]  J. Klafter,et al.  Introduction to the Theory of Lévy Flights , 2008 .

[45]  V. Zolotarev,et al.  Chance and Stability, Stable Distributions and Their Applications , 1999 .

[46]  M. Magdziarz Correlation cascades, ergodic properties and long memory of infinitely divisible processes , 2009 .

[47]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[48]  Agnieszka Wyłomańska,et al.  Measures of Dependence for Stable AR(1) Models with Time-Varying Coefficients , 2008 .

[49]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[50]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[51]  I. Pavlyukevich,et al.  Small noise asymptotics and first passage times of integrated Ornstein-Uhlenbeck processes driven by $\alpha$-stable L\'{e}vy processes , 2012, 1205.6116.

[52]  A. V. Tour,et al.  Lévy anomalous diffusion and fractional Fokker–Planck equation , 2000, nlin/0001035.

[53]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[54]  Stanley P. Azen,et al.  Computational Statistics and Data Analysis (CSDA) , 2006 .

[55]  P. Ditlevsen,et al.  Observation of α‐stable noise induced millennial climate changes from an ice‐core record , 1999 .

[56]  Ralf Metzler,et al.  Bifurcation, bimodality, and finite variance in confined Lévy flights. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Generalized Elastic Model: Fractional Langevin Description, Fluctuation Relation, and Linear Response , 2013 .

[58]  W. Härdle,et al.  Statistical Tools for Finance and Insurance , 2003 .

[59]  Diego del-Castillo-Negrete,et al.  Transport in the spatially tempered, fractional Fokker–Planck equation , 2012 .

[60]  J. Peinke,et al.  Turbulent cascades in foreign exchange markets , 1996, Nature.

[61]  K. Burnecki,et al.  Fractional Lévy stable motion can model subdiffusive dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  I M Sokolov,et al.  Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Patrick Cheridito,et al.  Fractional Ornstein-Uhlenbeck processes , 2003 .

[64]  A. Chechkin,et al.  First Passage Behavior of Multi-Dimensional Fractional Brownian Motion and Application to Reaction Phenomena , 2013, 1306.1667.

[65]  Aleksei V. Chechkin,et al.  Stationary states of non-linear oscillators driven by Lévy noise , 2002 .

[66]  E. Foufoula‐Georgiou,et al.  Subordinated Brownian motion model for sediment transport. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  J. Klafter,et al.  Stochastic Ornstein–Uhlenbeck Capacitors , 2005 .

[68]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[69]  Aleksei V. Chechkin,et al.  Lévy Flights in a Steep Potential Well , 2003, cond-mat/0306601.

[70]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[71]  I. M. Sokolov,et al.  Fractional diffusion equation for a power-law-truncated Lévy process , 2004 .

[72]  R. Sánchez,et al.  Kinetic equation of linear fractional stable motion and applications to modeling the scaling of intermittent bursts. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  V. S. Romanov,et al.  Spectral and statistical analysis of fluctuations in the SOL and diverted plasmas of the Uragan-3M torsatron , 2009 .

[74]  J. Doob,et al.  The Brownian Movement and Stochastic Equations , 1942 .

[75]  S. Bochner Diffusion Equation and Stochastic Processes. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[76]  A. Wyłomańska,et al.  Subordinated a -stable OrnsteinUhlenbeck process as a tool for financial data description , 2011 .

[77]  Ralf Metzler,et al.  Optimal target search on a fast-folding polymer chain with volume exchange. , 2005, Physical review letters.

[78]  Koponen,et al.  Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[79]  V. Gonchar,et al.  Stable Lévy distributions of the density and potential fluctuations in the edge plasma of the U-3M torsatron , 2003 .

[80]  J. Klafter,et al.  Correlation cascades of Lévy-driven random processes , 2007 .

[81]  J. Klafter,et al.  Lévy-Driven Langevin Systems: Targeted Stochasticity , 2003 .

[82]  Kristoffer Rypdal,et al.  Stochastic modeling of the AE index and its relation to fluctuations in Bz of the IMF on time scales shorter than substorm duration , 2010 .

[83]  I. Sokolov Lévy flights from a continuous-time process. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  C. L. Nikias,et al.  Signal processing with alpha-stable distributions and applications , 1995 .

[85]  Werner Ebeling,et al.  Harmonic oscillator under Lévy noise: unexpected properties in the phase space. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Joseph Klafter,et al.  Generalized elastic model yields a fractional Langevin equation description. , 2010, Physical review letters.

[87]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[88]  W. Härdle,et al.  Statistical Tools for Finance and Insurance (2nd edition) , 2011 .

[89]  Stanley,et al.  Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. , 1994, Physical review letters.

[90]  Andrew G. Glen,et al.  APPL , 2001 .

[91]  Samuel Kotz,et al.  The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance , 2001 .

[92]  J. Klafter,et al.  From solar flare time series to fractional dynamics , 2008 .

[93]  Nicolas E. Humphries,et al.  Scaling laws of marine predator search behaviour , 2008, Nature.

[94]  Stamatis Cambanis,et al.  Ergodic properties of stationary stable processes , 1987 .

[95]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[96]  M. Meerschaert,et al.  Fractional Laplace motion , 2006, Advances in Applied Probability.

[97]  Igor Sokolov,et al.  Lévy flights in external force fields: from models to equations , 2002 .

[98]  K. Burnecki,et al.  Fractional process as a unified model for subdiffusive dynamics in experimental data. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[99]  Yann Gambin,et al.  Bounded step superdiffusion in an oriented hexagonal phase. , 2005, Physical Review Letters.

[100]  S. Cambanis,et al.  Chaotic behavior of infinitely divisible processes , 1995 .

[101]  B. Øksendal,et al.  Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .

[102]  Edge fluctuation studies in Heliotron J , 2005 .

[103]  Piotr Kokoszka,et al.  INFINITE VARIANCE STABLE ARMA PROCESSES , 1994 .

[104]  Stable Distribution and Levy Process in Fractal Turbulence , 1984 .

[105]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[106]  Igor M. Sokolov,et al.  PARADOXAL DIFFUSION IN CHEMICAL SPACE FOR NEAREST-NEIGHBOR WALKS OVER POLYMER CHAINS , 1997 .

[107]  Linear relaxation processes governed by fractional symmetric kinetic equations , 1999, cond-mat/9910091.