Stochastic Optimal Prediction for the Kuramoto-Sivashinsky Equation

We examine the problem of predicting the evolution of solutions of the Kuramoto--Sivashinsky equation when initial data are missing. We use the optimal prediction method to construct equations for the reduced system. The resulting equations for the resolved components of the solution are random integrodifferential equations. The accuracy of the predictions depends on the type of projection used in the integral term of the optimal prediction equations and on the choice of resolved components. The novel features of our work include the first application of the optimal prediction formalism for the dimensional reduction of a nonlinear, non-Hamiltonian system of equations and the use of a noninvariant measure constructed through inference from empirical data.

[1]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[2]  A J Chorin,et al.  Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. V. Skorohod,et al.  The theory of stochastic processes , 1974 .

[4]  J. Hyman,et al.  The Kuramoto-Sivashinsky equation: a bridge between PDE's and dynamical systems , 1986 .

[5]  Heinz-Otto Kreiss,et al.  Numerical Experiments on the Interaction Between the Large- and Small-Scale Motions of the Navier-Stokes Equations , 2003, Multiscale Model. Simul..

[6]  Andrew J. Majda,et al.  A mathematical framework for stochastic climate models , 2001 .

[7]  Philip Holmes,et al.  Scale and space localization in the Kuramoto-Sivashinsky equation. , 1999, Chaos.

[8]  Alexandre J. Chorin,et al.  Stochastic Optimal Prediction with Application to Averaged Euler Equations , 2000, COLING 2000.

[9]  A. Yaglom,et al.  An Introduction to the Theory of Stationary Random Functions , 1963 .

[10]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[11]  Alexandre J. Chorin,et al.  On the prediction of large-scale dynamics using unresolved computations , 1998 .

[12]  Alexandre J. Chorin,et al.  Optimal prediction with memory , 2002 .

[13]  K. Binder,et al.  Monte Carlo Simulation in Statistical Physics , 1992, Graduate Texts in Physics.

[14]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[15]  Toshio Tsuzmn,et al.  On the Formation of Dissipative Structures in Reaction-Diffusion Systems , 1975 .

[16]  A J Chorin,et al.  Optimal prediction of underresolved dynamics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[18]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[19]  Andrew J. Majda,et al.  A priori tests of a stochastic mode reduction strategy , 2002 .

[20]  Ben Kröse,et al.  Efficient greedy learning of Gaussian mixtures , 2001 .

[21]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[22]  S. Toh,et al.  Statistical Model with Localized Structures Describing the Spatio-Temporal Chaos of Kuramoto-Sivashinsky Equation , 1987 .

[23]  Stéphane Zaleski,et al.  Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces , 1986 .

[24]  Sture Nordholm,et al.  A systematic derivation of exact generalized Brownian motion theory , 1975 .

[25]  Volker Tresp,et al.  Averaging, maximum penalized likelihood and Bayesian estimation for improving Gaussian mixture probability density estimates , 1998, IEEE Trans. Neural Networks.

[26]  R. Téman,et al.  Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations , 1988 .

[27]  Kevin K. Lin Random perturbations of SRB measures and numerical studies of chaotic dynamics , 2003 .

[28]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[29]  J. Krug,et al.  A particle model for the Kuramoto-Sivashinsky equation , 1995 .

[30]  Alexandre J. Chorin Conditional Expectations and Renormalization , 2003, Multiscale Model. Simul..

[31]  R. Zwanzig Nonlinear generalized Langevin equations , 1973 .

[32]  L. Cooper,et al.  When Networks Disagree: Ensemble Methods for Hybrid Neural Networks , 1992 .

[33]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[34]  D. McLaughlin,et al.  SPATIOTEMPORAL CHAOS AND EFFECTIVE STOCHASTIC DYNAMICS FOR A NEAR-INTEGRABLE NONLINEAR SYSTEM , 1999 .