Stimulated emission and lasing of random-growth oriented ZnO nanowires

We report room-temperature ultraviolet stimulated emission and lasing from optically pumped high-quality ZnO nanowires. Emission due to the exciton-exciton scattering process shows apparent stimulated-emission behavior. Several sharp peaks associated with random laser action are seen under high pumping intensity. The mechanism of laser emission is attributed to coherent multiple scattering among the random-growth oriented nanowires. The characteristic cavity length is determined by the Fourier transform of the lasing spectrum.

[1]  Claus Klingshirn,et al.  Semiconductor Optics , 1995 .

[2]  Peidong Yang,et al.  Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides , 2003 .

[3]  Shui-Tong Lee,et al.  Room-temperature single nanoribbon lasers , 2004 .

[4]  I. Chen,et al.  Two-step oxygen injection process for growing ZnO nanorods , 2003 .

[5]  Y. Nakata,et al.  Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume , 2004 .

[6]  D. Shen,et al.  Structure and photoluminescence properties of ZnO microrods , 2003 .

[7]  H. Yan,et al.  ZnO Nanoribbon Microcavity Lasers , 2003 .

[8]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[9]  Zeev Valy Vardeny,et al.  Spectral analysis of polymer microring lasers , 2000 .

[10]  S. Lau,et al.  Ultraviolet lasing of ZnO whiskers prepared by catalyst-free thermal evaporation , 2003 .

[11]  Kam Sing Wong,et al.  Microcavity lasing behavior of oriented hexagonal ZnO nanowhiskers grown by hydrothermal oxidation , 2004 .

[12]  Anirban Mitra,et al.  Random laser action in ZnO , 2000 .

[13]  Changhong Liu,et al.  High‐Density, Ordered Ultraviolet Light‐Emitting ZnO Nanowire Arrays , 2003 .

[14]  Arkadi Chipouline,et al.  Random lasing in π-conjugated films and infiltrated opals , 2001 .

[15]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[16]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[17]  S. Ho,et al.  Optically-pumped ultraviolet microdisk laser on a silicon substrate , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[18]  Charles M. Lieber,et al.  Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology , 1998, Nature.

[19]  Robert P. H. Chang,et al.  Random laser action in semiconductor powder , 1999 .

[20]  J. Choy,et al.  Soft Solution Route to Directionally Grown ZnO Nanorod Arrays on Si Wafer; Room‐Temperature Ultraviolet Laser , 2003 .

[21]  Robert P. H. Chang,et al.  Random lasing in closely packed resonant scatterers , 2004 .

[22]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[23]  W. Hsieh,et al.  Excitonic polaron and phonon assisted photoluminescence of ZnO nanowires , 2004 .

[24]  Jin-Ho Choy,et al.  Hydrothermal route to ZnO nanocoral reefs and nanofibers , 2004 .

[25]  Clement Yuen,et al.  Random laser action in ZnO nanorod arrays embedded in ZnO epilayers , 2004 .

[26]  A. Nakao,et al.  RBS study on Na-implanted polystyrene at various doses , 2000 .