The calculation of indirect nuclear spin-spin coupling constants in large molecules.

We present calculations of indirect nuclear spin-spin coupling constants in large molecular systems, performed using density functional theory. Such calculations, which have become possible because of the use of linear-scaling techniques in the evaluation of the Coulomb and exchange-correlation contributions to the electronic energy, allow us to study indirect spin-spin couplings in molecules of biological interest, without having to construct artificial model systems. In addition to presenting a statistical analysis of the large number of short-range coupling constants in large molecular systems, we analyse the asymptotic dependence of the indirect nuclear spin-spin coupling constants on the internuclear separation. In particular, we demonstrate that, in a sufficiently large one-electron basis set, the indirect spin-spin coupling constants become proportional to the inverse cube of the internuclear separation, even though the diamagnetic and paramagnetic spin-orbit contributions to the spin-spin coupling constants separately decay as the inverse square of this separation. By contrast, the triplet Fermi contact and spin-dipole contributions to the indirect spin-spin coupling constants decay exponentially and as the inverse cube of the internuclear separation, respectively. Thus, whereas short-range indirect spin-spin coupling constants are usually dominated by the Fermi contact contribution, long-range coupling constants are always dominated by the negative diamagnetic spin-orbit contribution and by the positive paramagnetic spin-orbit contribution, with small spin-dipole and negligible Fermi contact contributions.

[1]  J. Facelli,et al.  Advances in Theoretical and Physical Aspects of Spin—Spin Coupling Constants , 2005 .

[2]  P. Pyykkö Theory of NMR Parameters. From Ramsey to Relativity, 1953 to 1983 , 2004 .

[3]  M. Pecul,et al.  Spin–Spin Coupling Constants with HF and DFT Methods , 2004 .

[4]  T. Helgaker,et al.  The NMR indirect nuclear spin-spin coupling constants for some small rigid hydrocarbons: molecular equilibrium values and vibrational corrections , 2004 .

[5]  M. Pecul,et al.  The Spin–Spin Coupling Constants in Ethane, Methanol and Methylamine: A Comparison of DFT, MCSCF and CCSD Results , 2003 .

[6]  J. Gauss,et al.  Full configuration-interaction and coupled-cluster calculations of the indirect spin–spin coupling constant of BH , 2003 .

[7]  D. Cremer,et al.  Extension of the Karplus Relationship for NMR Spin-Spin Coupling Constants to Nonplanar Ring Systems: Pseudorotation of Cyclopentane , 2003 .

[8]  D. L. Bryce,et al.  Spin -spin coupling tensors as determined by experiment and computational chemistry , 2002 .

[9]  E. Díez,et al.  Spin–spin coupling constants in ethylene: equilibrium values , 2002 .

[10]  J. Peralta,et al.  Non‐empirical calculations of NMR indirect carbon–carbon coupling constants: 1. Three‐membered rings , 2002 .

[11]  R. Bartlett,et al.  Vibrational Effects on the F−F Spin−Spin Coupling Constant (2hJF-F) in FHF- and FDF- , 2001 .

[12]  J. Gauss,et al.  Triple excitation effects in coupled-cluster calculations of indirect spin–spin coupling constants , 2001 .

[13]  P. Provasi,et al.  The effect of lone pairs and electronegativity on the indirect nuclear spin–spin coupling constants in CH2X (X=CH2, NH, O, S): Ab initio calculations using optimized contracted basis sets , 2001 .

[14]  K. Ruud,et al.  Spin–spin coupling constants in C2H2 , 2001 .

[15]  P. Lantto,et al.  Effect of correlating core orbitals in calculations of nuclear spin–spin couplings , 2001 .

[16]  S. Grzesiek,et al.  An introduction to hydrogen bond scalar couplings , 2001 .

[17]  Trygve Helgaker,et al.  Analytical calculation of nuclear magnetic resonance indirect spin–spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory , 2000 .

[18]  Jürgen Gräfenstein,et al.  Nuclear magnetic resonance spin–spin coupling constants from coupled perturbed density functional theory , 2000 .

[19]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[20]  Jochen Autschbach,et al.  Nuclear spin–spin coupling constants from regular approximate relativistic density functional calculations. I. Formalism and scalar relativistic results for heavy metal compounds , 2000 .

[21]  S. Kirpekar,et al.  Nuclear spin–spin coupling in the acetylene isotopomers calculated from ab initio correlated surfaces for 1J(C, H), 1J(C, C), 2J(C, H), and 3J(H, H) , 2000 .

[22]  K. Mikkelsen,et al.  Rovibrationally averaged magnetizability, rotational g factor, and indirect spin–spin coupling of the hydrogen fluoride molecule , 1999 .

[23]  Trygve Helgaker,et al.  Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constants , 1999 .

[24]  H. Koch,et al.  The vibrational and temperature dependence of the indirect nuclear spin–spin coupling constants of the oxonium (H3O+) and hydroxyl (OH−) ions , 1998 .

[25]  M. Pecul,et al.  SOLVENT EFFECTS ON NMR SPECTRUM OF ACETYLENE CALCULATED BY AB INITIO METHODS , 1998 .

[26]  S. Sauer,et al.  Calculated spin± spin coupling surfaces in the water molecule; prediction and analysis of J(O,H), J(O, D) and J(H, D) in water isotopomers , 1998 .

[27]  Christian Ochsenfeld,et al.  Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices , 1998 .

[28]  K. Ruud,et al.  Basis-set dependence of nuclear spin-spin coupling constants , 1998 .

[29]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix. II. Rigorous bounds on exchange integrals and incremental Fock build , 1997 .

[30]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix , 1997 .

[31]  R. Bartlett,et al.  Structure and NMR Spectra of the 2-Norbornyl Carbocation: Prediction of 1J(13C13C) for the Bridged, Pentacoordinate Carbon Atom , 1996 .

[32]  Eric Schwegler,et al.  Linear scaling computation of the Hartree–Fock exchange matrix , 1996 .

[33]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[34]  Benny G. Johnson,et al.  Linear scaling density functional calculations via the continuous fast multipole method , 1996 .

[35]  T. Ziegler,et al.  NMR Spin−Spin Coupling Constants from Density Functional Theory with Slater-Type Basis Functions , 1996 .

[36]  Rodney J. Bartlett,et al.  Electron correlation effects on the theoretical calculation of nuclear magnetic resonance spin–spin coupling constants , 1996 .

[37]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[38]  R. Bartlett,et al.  Nuclear coupling constants obtained by the equation-of-motion coupled cluster theory , 1994 .

[39]  Hideo Sekino,et al.  Coupled‐cluster calculations of indirect nuclear coupling constants: The importance of non‐Fermi contact contributions , 1994 .

[40]  Dennis R. Salahub,et al.  Calculation of spin—spin coupling constants using density functional theory , 1994 .

[41]  P. Jørgensen,et al.  Ab initio study of the NMR shielding constants and spin-spin coupling constants in cyclopropene , 1993 .

[42]  H. Ågren,et al.  Indirect nuclear spin–spin coupling constants from multiconfiguration linear response theory , 1992 .

[43]  Lynn W. Jelinski,et al.  Nuclear magnetic resonance spectroscopy. , 1990, Analytical chemistry.

[44]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[45]  Jeppe Olsen,et al.  Linear response calculations for large scale multiconfiguration self‐consistent field wave functions , 1988 .

[46]  G. Scuseria,et al.  Spin–spin coupling constants of CO and N2 , 1987 .

[47]  Hans Ågren,et al.  Efficient optimization of large scale MCSCF wave functions with a restricted step algorithm , 1987 .

[48]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[49]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[50]  E. Davidson,et al.  One- and two-electron integrals over cartesian gaussian functions , 1978 .

[51]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[52]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[53]  Martin Karplus,et al.  Vicinal Proton Coupling in Nuclear Magnetic Resonance , 1963 .

[54]  M. Karplus Contact Electron‐Spin Coupling of Nuclear Magnetic Moments , 1959 .

[55]  N. Ramsey Electron Coupled Interactions between Nuclear Spins in Molecules , 1953 .

[56]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.