Photonic band gap structures by sol–gel processing

Abstract Since the launching of the photonic bandgap concept in 1987, the development of corresponding structures has expanded very rapidly, in particular two-dimensional semiconductor-based structures. In the case of sol–gel derived materials, the main emphasis for the past year has been on one-dimensional multilayer stacks and, in particular, on three-dimensional structures of the opal and inverse opal type.

[1]  A. Imhof,et al.  Ordered macroporous materials by emulsion templating , 1997, Nature.

[2]  Vos,et al.  Preparation of photonic crystals made of air spheres in titania , 1998, Science.

[3]  Alexander Eychmüller,et al.  Self-organization of uniform silica globules into the three-dimensional superlattice of artificial opals , 1999 .

[4]  Miguel Holgado,et al.  3D Long‐range ordering in ein SiO2 submicrometer‐sphere sintered superstructure , 1997 .

[5]  Willem L. Vos,et al.  Multiple Bragg wave coupling in photonic band gap crystals , 2000 .

[6]  Willem L. Vos,et al.  INHIBITED LIGHT PROPAGATION AND BROADBAND REFLECTION IN PHOTONIC AIR-SPHERE CRYSTALS , 1999 .

[7]  Guangming Wu,et al.  ZrO2 thin films and ZrO2/SiO2 optical reflection filters deposited by sol–gel method , 2000 .

[8]  D. Carroll,et al.  Structure Determination in Colloidal Crystal Photonic Bandgap Structures , 2002 .

[9]  G. Whitesides,et al.  Fabrication of photonic crystal lasers by nanomolding of solgel glasses. , 1999, Applied optics.

[10]  V. Berger Photonic crystals and photonic structures , 1999 .

[11]  Alfons van Blaaderen,et al.  Acid-Based Synthesis of Monodisperse Rare-Earth-Doped Colloidal SiO2 Spheres , 2002 .

[12]  Alfons van Blaaderen,et al.  Photonic crystals of core-shell colloidal particles , 2002 .

[13]  Yugen Zhang,et al.  A new route to three-dimensionally well-ordered macroporous rare-earth oxides , 2001 .

[14]  Henry Schriemer,et al.  Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals , 2000 .

[15]  Dz Zhang,et al.  Synthetic SiO2 Opals , 2001 .

[16]  S. L. Ng,et al.  Thermally tuning of the photonic band gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3 , 2001 .

[17]  C. Trapalis,et al.  Study of a multilayer wavelength-selective reflector prepared by the sol-gel process , 1995 .

[18]  Daniel M. Mittleman,et al.  The Fabrication and Bandgap Engineering of Photonic Multilayers , 2001 .

[19]  C. López,et al.  Photonic crystal made by close packing SiO2submicron spheres , 1997 .

[20]  Yihong Chen,et al.  Sub-micrometre dielectric and metallic yablonovite structures fabricated from resist templates , 2002 .

[21]  C. López,et al.  Face centered cubic photonic bandgap materials based on opal-semiconductor composites , 1999 .

[22]  D. McComb,et al.  Observation of Bragg reflection in photonic crystals synthesized from air spheres in a titania matrix , 2000 .

[23]  Jun Shen,et al.  Interference coating by hydrophobic aerogel-like SiO2 thin films , 2001 .

[24]  M. Kuwabara,et al.  An Easy Method for Fabricating TiO2 Gel Photonic Crystals Using Molds and Highly Concentrated Alkoxide Solutions , 2002 .

[25]  Y. Ye,et al.  Large-scale ordered macroporous SiO2 thin films by a template-directed method , 2002 .

[26]  Willem L. Vos,et al.  Fabrication and Characterization of Large Macroporous Photonic Crystals in Titania , 2001 .

[27]  Jane F. Bertone,et al.  Thickness Dependence of the Optical Properties of Ordered Silica-Air and Air-Polymer Photonic Crystals , 1999 .

[28]  Knight,et al.  Photonic band gap guidance in optical fibers , 1998, Science.

[29]  Kazumi Wada,et al.  SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method , 1999 .

[30]  Daniel M. Mittleman,et al.  Template-Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays of Voids , 1999 .

[31]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[32]  Rui M. Almeida,et al.  Sol-gel preparation of one-dimensional photonic bandgap structures , 2002, SPIE OPTO.

[33]  C. Bovier,et al.  Sol–gel fabrication of thick multilayers applied to Bragg reflectors and microcavities , 2002 .

[34]  Seung‐Man Yang,et al.  Ordered Macroporous Particles by Colloidal Templating , 2001 .

[35]  Jacques Mugnier,et al.  Eu3+-doped microcavities fabricated by sol–gel process , 2001 .

[36]  D. Ganguli,et al.  Preparation of wavelength-selective reflectors by sol-gel processing , 1987 .

[37]  J. Ballato Tailoring visible photonic bandgaps through microstructural order and coupled material effects in SiO 2 colloidal crystals , 2000 .

[38]  A. Richel,et al.  Synthesis and optical properties of opal and inverse opal photonic crystals , 2001 .

[39]  D. Ganguli,et al.  Sol-gel preparation of wavelength-selective reflecting coatings in the system ZrO2SiO2 , 1989 .

[40]  Deng,et al.  Hierarchically ordered oxides , 1998, Science.

[41]  C. Trapalis,et al.  Sol-gel processing of multilayer thin coatings , 1992 .

[42]  Robert S. Windeler,et al.  Tunable photonic band gap fiber , 2002, Optical Fiber Communication Conference and Exhibit.

[43]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[44]  Rui M. Almeida,et al.  Photonic bandgap materials and structures by sol–gel processing , 2003 .

[45]  Francisco Meseguer,et al.  Evidence of FCC crystallization of SiO2 nanospheres , 1997 .