Markov chain model for multimodal biometric rank fusion

Multimodal biometric aims at increasing reliability of biometric systems through utilizing more than one biometric in decision-making process. An effective fusion scheme is necessary for combining information from various sources. Such information can be integrated at several distinct levels, such as sensor level, feature level, match score level, rank level, and decision level. In this paper, we present a multimodal biometric system utilizing face, iris, and ear biometric features through rank level fusion method using novel Markov chain approach. We first apply fisherimage technique to face and ear image databases for recognition and Hough transform and Hamming distance techniques for iris image recognition. The main contribution is in introducing Markov chain approach for biometric rank aggregation. One of the distinctive features of this method is that it satisfies the Condorcet criterion, which is essential in any fair rank aggregation system. The experimentation shows superiority of the proposed approach to other recently introduced biometric rank aggregation methods. The developed system can be effectively used by security and intelligence services for controlling access to prohibited areas and protecting important national or public information.

[1]  Nicolas de Condorcet Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .

[2]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[3]  Anil K. Jain,et al.  FVC2004: Third Fingerprint Verification Competition , 2004, ICBA.

[4]  Robert Frischholz,et al.  BioID: A Multimodal Biometric Identification System , 2000, Computer.

[5]  John Daugman How iris recognition works , 2004 .

[6]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[7]  Arun Ross,et al.  Handbook of Multibiometrics , 2006, The Kluwer international series on biometrics.

[8]  Philippe C. Cattin,et al.  Sensor fusion for a biometric system using gait , 2001, Conference Documentation International Conference on Multisensor Fusion and Integration for Intelligent Systems. MFI 2001 (Cat. No.01TH8590).

[9]  David Zhang,et al.  Palmprint authentication using multiple classifiers , 2004, SPIE Defense + Commercial Sensing.

[10]  Marina L. Gavrilova,et al.  FES: A System for Combining Face, Ear and Signature Biometrics Using Rank Level Fusion , 2008, Fifth International Conference on Information Technology: New Generations (itng 2008).

[11]  Anil K. Jain,et al.  Likelihood Ratio-Based Biometric Score Fusion , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Bernadette Dorizzi,et al.  Multimodal biometric score fusion: The Mean Rule vs. support vector classifiers , 2005, 2005 13th European Signal Processing Conference.

[13]  Qiang Li,et al.  Feature-Level Fusion of Hand Biometrics for Personal Verification Based on Kernel PCA , 2006, ICB.

[14]  M. A. Carreira-Perpinan,et al.  Compression neural networks for feature extraction: Application to human recognition from ear images , 1995 .

[15]  Arun Ross,et al.  Score normalization in multimodal biometric systems , 2005, Pattern Recognit..

[16]  Julian Fiérrez,et al.  A Comparative Evaluation of Fusion Strategies for Multimodal Biometric Verification , 2003, AVBPA.

[17]  Marina L. Gavrilova,et al.  Multimodal Biometric System Using Rank-Level Fusion Approach , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[18]  M. Dobes,et al.  Human eye localization using the modified Hough transform , 2006 .

[19]  Arun Ross,et al.  Information fusion in biometrics , 2003, Pattern Recognit. Lett..

[20]  Ajay Kumar,et al.  A Novel Approach to Improve Biometric Recognition Using Rank Level Fusion , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Kenneth Revett,et al.  Behavioral Biometrics: A Remote Access Approach , 2008 .

[22]  Robyn A. Owens,et al.  Location of the pupil-iris border in slit-lamp images of the cornea , 1999, Proceedings 10th International Conference on Image Analysis and Processing.

[23]  P.-C.-F. Daunou,et al.  Mémoire sur les élections au scrutin , 1803 .

[24]  Neil Yager,et al.  Biometric System and Data Analysis: Design, Evaluation, and Data Mining , 2010 .

[25]  Arun Ross,et al.  Fusion in Multibiometric Identification Systems: What about the Missing Data? , 2009, ICB.

[26]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[27]  Sargur N. Srihari,et al.  Decision Combination in Multiple Classifier Systems , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Arun Ross,et al.  Incorporating Ancillary Information in Multibiometric Systems , 2008 .

[29]  Rama Chellappa,et al.  Empirical performance analysis of linear discriminant classifiers , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[30]  A. Agresti An introduction to categorical data analysis , 1997 .

[31]  Richard P. Wildes,et al.  Iris recognition: an emerging biometric technology , 1997, Proc. IEEE.

[32]  David Zhang,et al.  When Faces Are Combined with Palmprints: A Novel Biometric Fusion Strategy , 2004, ICBA.

[33]  Seongwon Cho,et al.  Iris Recognition Using a Low Level of Details , 2006, ISVC.

[34]  Anil K. Jain,et al.  Integrating Faces and Fingerprints for Personal Identification , 1998, IEEE Trans. Pattern Anal. Mach. Intell..