Computational Assessment of Stent Durability Using Fatigue to Fracture Approach

[1]  L. P. Pook,et al.  Linear Elastic Fracture Mechanics for Engineers: Theory and Applications , 2000 .

[2]  P. Prendergast,et al.  Cardiovascular stent design and vessel stresses: a finite element analysis. , 2005, Journal of biomechanics.

[3]  Manabu Enoki,et al.  Finite Element Analysis of Tensile Fatigue Behavior of Coronary Stent , 2012 .

[4]  M. Perry,et al.  Finite element analysis and fatigue of stents , 2002, Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy.

[5]  Mitsuo Umezu,et al.  Flexibility and Stent Fracture Potentials Against Cyclically Bending Coronary Artery Motions: Comparison Between 2-Link and 3-Link DESs , 2013 .

[6]  V Gourisankaran,et al.  The finite element analysis of stresses in atherosclerotic arteries during balloon angioplasty. , 2000, Critical reviews in biomedical engineering.

[7]  Bin Li,et al.  A Procedure for Fast Evaluation of High-Cycle Fatigue Under Multiaxial Random Loading , 2002 .

[8]  Patrick W Serruys,et al.  Coronary-artery stents. , 2006, The New England journal of medicine.

[9]  Nuno Rebelo,et al.  On Modeling Assumptions in Finite Element Analysis of Stents , 2011 .

[10]  P Segers,et al.  Finite element analysis and stent design: Reduction of dogboning. , 2006, Technology and health care : official journal of the European Society for Engineering and Medicine.

[11]  Sean B. Leen,et al.  Microstructure-sensitive prediction and experimental validation of fretting fatigue , 2013 .

[12]  Silvia Schievano,et al.  Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation. , 2010, Journal of biomechanics.

[13]  P Segers,et al.  Our capricious vessels: The influence of stent design and vessel geometry on the mechanics of intracranial aneurysm stent deployment. , 2012, Journal of biomechanics.

[14]  Cristian Dascalu,et al.  An introduction to fracture mechanics in linear elastic materials , 2007 .

[15]  R O Ritchie,et al.  Kitagawa-Takahashi diagrams define the limiting conditions for cyclic fatigue failure in human dentin. , 2006, Journal of biomedical materials research. Part A.

[16]  P. Alagona,et al.  The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. , 2012, Journal of the American College of Cardiology.

[17]  E. Edelman,et al.  Pathobiologic responses to stenting. , 1998, The American journal of cardiology.

[18]  M. E. Haddad,et al.  Prediction of non propagating cracks , 1979 .

[19]  Daniel Kujawski,et al.  A two-parameter analysis of S-N fatigue life using Δσ and σmax , 2009 .

[20]  Nuno Rebelo,et al.  Study of a Nitinol Stent Deployed into Anatomically Accurate Artery Geometry and Subjected to Realistic Service Loading , 2009, Journal of Materials Engineering and Performance.

[21]  Yanjun Zeng,et al.  Fatigue life analysis and experimental verification of coronary stent , 2010, Heart and Vessels.

[22]  Mica Grujicic,et al.  Fatigue-Life Computational Analysis for the Self-Expanding Endovascular Nitinol Stents , 2012, Journal of Materials Engineering and Performance.

[23]  S. M. Harvey,et al.  Nitinol Stent Fatigue in a Peripheral Human Artery Subjected to Pulsatile and Articulation Loading , 2011, Journal of Materials Engineering and Performance.

[24]  Yasushi Ito,et al.  Octree‐based reasonable‐quality hexahedral mesh generation using a new set of refinement templates , 2009 .

[25]  R. Ritchie Mechanisms of fatigue-crack propagation in ductile and brittle solids , 1999 .

[26]  R. J. Allen,et al.  A REVIEW OF FATIGUE CRACK GROWTH CHARACTERISATION BY LINEAR ELASTIC FRACTURE MECHANICS (LEFM). PART I—PRINCIPLES AND METHODS OF DATA GENERATION , 1988 .

[27]  Shijia Zhao,et al.  Performance of self-expanding nitinol stent in a curved artery: impact of stent length and deployment orientation. , 2012, Journal of biomechanical engineering.

[28]  K. Bathe,et al.  Inelastic Analysis of Solids and Structures , 2004 .

[29]  H. O. Fuchs,et al.  Metal fatigue in engineering , 2001 .

[30]  Silvia Schievano,et al.  Stent fracture in percutaneous pulmonary valve implantation: a finite element study , 2006 .

[31]  S. W. Robertson,et al.  Fatigue and durability of Nitinol stents. , 2008, Journal of the mechanical behavior of biomedical materials.

[32]  Nebojsa Jovicic,et al.  An estimation of the high-pressure pipe residual life , 2013 .

[33]  Simon Capewell,et al.  The comparative effectiveness of heart disease prevention and treatment strategies. , 2009, American journal of preventive medicine.

[34]  Hao-Ming Hsiao,et al.  Renal Artery Stent Bending Fatigue Analysis , 2007 .

[35]  Sean B. Leen,et al.  Micromechanical methodology for fatigue in cardiovascular stents , 2012 .

[36]  R O Ritchie,et al.  In vitro fatigue behavior of human dentin with implications for life prediction. , 2003, Journal of biomedical materials research. Part A.

[37]  E. Braunwald,et al.  A tale of coronary artery disease and myocardial infarction. , 2012, The New England journal of medicine.

[38]  Sean B. Leen,et al.  Experimental characterisation for micromechanical modelling of CoCr stent fatigue. , 2014, Biomaterials.

[39]  Weiqiang Wang,et al.  Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. , 2006, Journal of biomechanics.

[40]  John R. Rice,et al.  Mechanics of Crack Tip Deformation and Extension by Fatigue , 1967 .

[41]  N. Kojic,et al.  Computer Modeling in Bioengineering: Theoretical Background, Examples and Software , 2008 .

[42]  Lorenza Petrini,et al.  On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. , 2008, Journal of biomechanics.

[43]  Robert Burgermeister,et al.  Fatigue and life prediction for cobalt-chromium stents: A fracture mechanics analysis. , 2006, Biomaterials.

[44]  Damiano Pasini,et al.  Shape optimization of stress concentration-free lattice for self-expandable Nitinol stent-grafts. , 2012, Journal of biomechanics.

[45]  Lorenza Petrini,et al.  Numerical investigation of the intravascular coronary stent flexibility. , 2004, Journal of biomechanics.