SAFT-VR modelling of the phase equilibrium of long-chain n-alkanes

The statistical associating fluid theory for potentials of variable attractive range (SAFT-VR) has been used in the calculation of the phase equilibria for long-chain n-alkanes and their mixtures. We treat the molecules as chains formed from united-atom hard-sphere segments, with a square-well potential of variable attractive range to describe the dispersive forces. A empirical relationship derived in earlier work is used to determine the number of such segments in relation to the carbon number for each member of the homologous series. Simple linear relationships between the potential model parameters and molecular weight have been determined enabling predictions of the fluid phase equilibria of heavier n-alkane molecules for which no experimental data are available. This is illustrated by a comparison with simulation data from the literature for the coexisting densities of n-octatetracontane (C48H98). Additionally we have examined binary mixtures of methane+n-hexadecane (C16H34) and hexane+n-tetradecane (C14H30) with the SAFT-VR approach, using simple Lorentz–Berthelot combining rules to determine the unlike interaction parameters. This study will allow an extension of the SAFT-VR approach to polymeric systems.

[1]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[2]  A. Smith,et al.  Properties of Pure Normal Alkanes in the C17 to C36 Range , 1955 .

[3]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[4]  D. R. Stull,et al.  Vapor Pressure of Pure Substances. Organic and Inorganic Compounds , 1947 .

[5]  Stanley H. Huang,et al.  Equation of state for small, large, polydisperse, and associating molecules , 1990 .

[6]  Tomáš Boublı́k,et al.  Hard‐Sphere Equation of State , 1970 .

[7]  A. Galindo,et al.  Predicting the High-Pressure Phase Equilibria of Water + n-Alkanes Using a Simplified SAFT Theory with Transferable Intermolecular Interaction Parameters , 1996 .

[8]  P. H. van Konynenburg,et al.  Critical lines and phase equilibria in binary van der Waals mixtures , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[9]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[10]  C. P. Hicks,et al.  Gas-liquid critical properties of binary mixtures , 1975 .

[11]  J. Prausnitz,et al.  Perturbed hard-chain theory: An equation of state for fluids containing small or large molecules , 1975 .

[12]  Berend Smit,et al.  Computer simulations of vapor-liquid phase equilibria of n-alkanes , 1995 .

[13]  K. E. Starling,et al.  Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres , 1971 .

[14]  T. E. Daubert,et al.  Data compilation tables of properties of pure compounds , 1985 .

[15]  Lourdes F. Vega,et al.  Prediction of Binary and Ternary Diagrams Using the Statistical Associating Fluid Theory (SAFT) Equation of State , 1998 .

[16]  D. Tassios,et al.  Thermophysical properties of n-Alkanes from C1 to C20 and their prediction for higher ones , 1990 .

[17]  J. Barker,et al.  Perturbation theory and liquid mixtures , 1970 .

[18]  J. Barker,et al.  What is "liquid"? Understanding the states of matter , 1976 .

[19]  J. Arons,et al.  Three phase equilibria in binary mixtures of ethane and higher n-alkanes , 1986 .

[20]  C. Peters,et al.  Phase equilibria of (methane + n-hexadecane) and (p, Vm, T) of n-hexadecane , 1985 .

[21]  George Jackson,et al.  THE THERMODYNAMICS OF MIXTURES AND THE CORRESPONDING MIXING RULES IN THE SAFT-VR APPROACH FOR POTENTIALS OF VARIABLE RANGE , 1998 .

[22]  A. Panagiotopoulos,et al.  The gibbs method for molecular-based computer simulations of phase equilibria , 1989 .

[23]  J. Gallagher,et al.  Global phase behavior of mixtures of short and long n‐alkanes , 1988 .

[24]  O. Redlich,et al.  On the thermodynamics of solutions; an equation of state; fugacities of gaseous solutions. , 1949, Chemical reviews.

[25]  G. Jackson,et al.  The theoretical prediction of the cricital points of alkanes, perfluoroalkanes, and their mixtures using bonded hard-sphere (BHS) theory , 1996 .

[26]  G. Jackson,et al.  Predicting the High-Pressure Phase Equilibria of Methane + n-Hexane Using the SAFT-VR Approach , 1998 .

[27]  Stanley H. Huang,et al.  Equation of state for small, large, polydisperse, and associating molecules: extension to fluid mixtures , 1991 .

[28]  P. Skripov,et al.  Estimation of the critical constants of long-chain normal alkanes , 1996 .

[29]  George Jackson,et al.  Statistical associating fluid theory for chain molecules with attractive potentials of variable range , 1997 .

[30]  George Jackson,et al.  Mixtures of associating spherical and chain molecules , 1989 .

[31]  R. L. Robinson,et al.  Evaluation of the simplified perturbed hard chain theory (SPHCT) for prediction of phase behavior of n-paraffins and mixtures of n-paraffins with ethane , 1990 .

[32]  Ho-mu Lin,et al.  Gas-liquid equilibrium in hydrogen + n-hexadecane and methane + n-hexadecane at elevated temperatures and pressures , 1980 .

[33]  R. Chirico,et al.  The vapor pressure of n-alkanes revisited. New high-precision vapor pressure data on n-decane, n-eicosane, and n-octacosane , 1989 .

[34]  J. Ely,et al.  Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane , 1987 .

[35]  R. D. Gray,et al.  Characterization and property prediction for heavy petroleum and synthetic liquids , 1989 .

[36]  A. Galindo,et al.  Predicting the High-Pressure Phase Equilibria of Binary Mixtures of n-Alkanes Using the SAFT-VR Approach , 1998 .

[37]  J. S. Rowlinson,et al.  Molecular Thermodynamics of Fluid-Phase Equilibria , 1969 .

[38]  Amyn S. Teja,et al.  The critical temperatures and densities of the n-alkanes from pentane to octadecane , 1990 .

[39]  William H. Press,et al.  Numerical Recipes in Fortran 77 , 1992 .

[40]  R. Scott,et al.  Static properties of solutions. Van der Waals and related models for hydrocarbon mixtures , 1970 .

[41]  A. Galindo,et al.  Predicting the High-Pressure Phase Equilibria of Binary Mixtures of Perfluoro-n-alkanes + n-Alkanes Using the SAFT-VR Approach , 1998 .

[42]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[43]  J. Gallagher,et al.  The search for tricriticality in binary mixtures of near-critical propane and normal paraffins , 1989 .

[44]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[45]  G. Soave,et al.  20 years of Redlich-Kwong equation of state , 1993 .

[46]  M. L. Mcglashan Phase equilibria in fluid mixtures , 1985 .

[47]  Daan Frenkel,et al.  Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .

[48]  R. Kobayashi,et al.  Direct vapor pressure measurements of ten n-alkanes m the 10-C28 range , 1994 .

[49]  J. I. Siepmann,et al.  A method for the direct calculation of chemical potentials for dense chain systems , 1990 .

[50]  S. Sandler,et al.  Local composition model for chainlike molecules: A new simplified version of the perturbed hard chain theory , 1986 .

[51]  B. Smit,et al.  Vapor-liquid equilibria of model alkanes. , 1993 .